Cheng-Hsuan Chiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8915839/publications.pdf

Version: 2024-02-01

46 papers

2,274 citations

394421 19 h-index 302126 39 g-index

47 all docs

47 docs citations

times ranked

47

4225 citing authors

#	Article	IF	CITATIONS
1	Synaptic dysregulation in a human iPS cell model of mental disorders. Nature, 2014, 515, 414-418.	27.8	471
2	Induced Pluripotent Stem Cells from Patients with Huntington's Disease Show CAG-Repeat-Expansion-Associated Phenotypes. Cell Stem Cell, 2012, 11, 264-278.	11,1	444
3	Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington's disease patient cells. Molecular Brain, 2012, 5, 17.	2.6	204
4	Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Molecular Psychiatry, 2011, 16, 358-360.	7.9	163
5	Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features. Acta Neuropathologica, 2018, 136, 239-253.	7.7	118
6	G9a and Jhdm2a Regulate Embryonic Stem Cell Fusion-Induced Reprogramming of Adult Neural Stem Cells. Stem Cells, 2008, 26, 2131-2141.	3.2	112
7	Inflammatory Reaction in Neurological Diseases. BioMed Research International, 2014, 2014, 1-2.	1.9	81
8	Structure and evolution of double minutes in diagnosis and relapse brain tumors. Acta Neuropathologica, 2019, 137, 123-137.	7.7	63
9	Cell-surface antigen profiling of pediatric brain tumors: B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery. Neuro-Oncology, 2021, 23, 999-1011.	1.2	63
10	Molecular pathology of paediatric central nervous system tumours. Journal of Pathology, 2017, 241, 159-172.	4.5	51
11	Human Parechovirus 3 Meningitis and Fatal Leukoencephalopathy. Journal of Neuropathology and Experimental Neurology, 2015, 74, 767-777.	1.7	49
12	A single-center study of the clinicopathologic correlates of gliomas with a MYB or MYBL1 alteration. Acta Neuropathologica, 2019, 138, 1091-1092.	7.7	45
13	YAP1-fusions in pediatric NF2-wildtype meningioma. Acta Neuropathologica, 2020, 139, 215-218.	7.7	45
14	Intracranial mesenchymal tumor with FETâ€CREB fusionâ€"A unifying diagnosis for the spectrum of intracranial myxoid mesenchymal tumors and angiomatoid fibrous histiocytomaâ€like neoplasms. Brain Pathology, 2021, 31, e12918.	4.1	44
15	Low-grade spinal glioneuronal tumors with BRAF gene fusion and 1p deletion but without leptomeningeal dissemination. Acta Neuropathologica, 2017, 134, 159-162.	7.7	33
16	Clinical, imaging, and molecular analysis of pediatric pontine tumors lacking characteristic imaging features of DIPG. Acta Neuropathologica Communications, 2020, 8, 57.	5.2	32
17	Tectal glioma as a distinct diagnostic entity: a comprehensive clinical, imaging, histologic and molecular analysis. Acta Neuropathologica Communications, 2018, 6, 101.	5.2	30
18	Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma. Nature Communications, 2021, 12, 4089.	12.8	27

#	Article	IF	CITATIONS
19	Clinicopathologic and molecular features of intracranial desmoplastic small round cell tumors. Brain Pathology, 2020, 30, 213-225.	4.1	20
20	Neuropsychological outcomes of patients with low-grade glioma diagnosed during the first year of life. Journal of Neuro-Oncology, 2019, 141, 413-420.	2.9	16
21	Safety and efficacy of brainstem biopsy in children and young adults. Journal of Neurosurgery: Pediatrics, 2020, 26, 552-562.	1.3	16
22	Molecular mechanism of the neurotrophic effect of GDNF on DA neurons: role of protein kinase CK2. Neurobiology of Aging, 2006, 27, 105-118.	3.1	14
23	Long-term visual acuity outcomes after radiation therapy for sporadic optic pathway glioma. Journal of Neuro-Oncology, 2019, 144, 603-610.	2.9	14
24	Infratentorial C11orf95-fused gliomas share histologic, immunophenotypic, and molecular characteristics of supratentorial RELA-fused ependymoma. Acta Neuropathologica, 2020, 140, 963-965.	7.7	14
25	Tectal glioma harbors high rates of KRAS G12R and concomitant KRAS and BRAF alterations. Acta Neuropathologica, 2020, 139, 601-602.	7.7	13
26	Risk stratification in pediatric low-grade glioma and glioneuronal tumor treated with radiation therapy: an integrated clinicopathologic and molecular analysis. Neuro-Oncology, 2020, 22, 1203-1213.	1.2	12
27	Evaluating pediatric spinal low-grade gliomas: a 30-year retrospective analysis. Journal of Neuro-Oncology, 2019, 145, 519-529.	2.9	11
28	Intracranial mesenchymal tumors with FET REB fusion are composed of at least two epigenetic subgroups distinct from meningioma and extracranial sarcomas. Brain Pathology, 2022, 32, e13037.	4.1	11
29	Chromosome arm 1q gain is an adverse prognostic factor in localized and diffuse leptomeningeal glioneuronal tumors with BRAF gene fusion and 1p deletion. Acta Neuropathologica, 2019, 137, 179-181.	7.7	10
30	Radiohistogenomics of pediatric low-grade neuroepithelial tumors. Neuroradiology, 2021, 63, 1185-1213.	2,2	8
31	Defining Optimal Target Volumes of Conformal Radiation Therapy for Diffuse Intrinsic Pontine Glioma. International Journal of Radiation Oncology Biology Physics, 2020, 106, 838-847.	0.8	7
32	Creation of a successful multidisciplinary course in pediatric neuroâ€oncology with a systematic approach to curriculum development. Cancer, 2021, 127, 1126-1133.	4.1	6
33	Myxoid glioneuronal tumor, <i>PDGFRA</i> p.K385Lâ€mutant, arising in midbrain tectum with multifocal CSF dissemination. Brain Pathology, 2022, 32, e13008.	4.1	6
34	Phase I study using crenolanib to target PDGFR kinase in children and young adults with newly diagnosed DIPG or recurrent high-grade glioma, including DIPG. Neuro-Oncology Advances, 2021, 3, vdab179.	0.7	5
35	The molecular characteristics of lowâ€grade and highâ€grade areas in desmoplastic infantile astrocytoma/ganglioglioma. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	5
36	Somatic LINE-1 promoter acquisition drives oncogenic FOXR2 activation in pediatric brain tumor. Acta Neuropathologica, 2022, 143, 605-607.	7.7	4

#	Article	IF	CITATIONS
37	Profound hearing loss following surgery in pediatric patients with posterior fossa low-grade glioma. Neuro-Oncology Practice, 2018, 5, 96-103.	1.6	2
38	Neuroimaging Findings in Children with Constitutional Mismatch Repair Deficiency Syndrome. American Journal of Neuroradiology, 2020, 41, 904-910.	2.4	2
39	A 67 Yearâ€Old Man with Multiple Sclerosis and New Cerebellar Lesions. Brain Pathology, 2015, 25, 507-508.	4.1	1
40	Pediatric Case of Li–Fraumeni Syndrome in Honduras. Case Reports in Pediatrics, 2021, 2021, 1-4.	0.4	1
41	Allâ€Induced pluripotent stem cells for basic and translational research on HD. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, A3.2-A4.	1.9	0
42	A 4‥earâ€Old Girl With a Supratentorial Mass. Brain Pathology, 2020, 30, 421-422.	4.1	0
43	LGG-15. COMPREHENSIVE ANALYSIS OF MYB/MYB1-ALTERED GLIOMAS: A MULTI-INSTITUTIONAL EXPERIENCE OF 33 GLIOMAS. Neuro-Oncology, 2021, 23, i34-i35.	1.2	0
44	Abstract 237: Inferring spatial organization of tumor microenvironment from single-cell RNA sequencing data using graph embedding., 2021,,.		0
45	High-grade neuroepithelial tumor with medulloepithelioma-like areas out of the central nervous system in an infant with hemihypertrophy: a unique association. Turkish Journal of Pediatrics, 2020, 62, 836.	0.6	0
46	A <i>CTNNB1</i> â€altered medulloblastoma shows the immunophenotypic, DNA methylation and transcriptomic profiles of SHHâ€activated, and not WNTâ€activated, medulloblastoma. Neuropathology and Applied Neurobiology, 2022, 48, e12815.	3.2	0