Pavel Lhotak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8912816/publications.pdf

Version: 2024-02-01

117625 168389 4,012 169 34 53 citations h-index g-index papers 189 189 189 2123 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chemistry of Thiacalixarenes. European Journal of Organic Chemistry, 2004, 2004, 1675-1692.	2.4	316
2	Chemistry of Thiacalixarenes. ChemInform, 2004, 35, no.	0.0	209
3	CATION-? INTERACTIONS IN CALIX[n]ARENE AND RELATED SYSTEMS. Journal of Physical Organic Chemistry, 1997, 10, 273-285.	1.9	121
4	Anion Receptors Based on Calixarenes. Topics in Current Chemistry, 0, , 65-95.	4.0	106
5	(Thia)calix[4]arene–porphyrin conjugates: novel receptors for fullerene complexation with C70over C60selectivity. New Journal of Chemistry, 2004, 28, 85-90.	2.8	99
6	Calix[4]arene-porphyrin Conjugates as Versatile Molecular Receptors for Anions. Organic Letters, 2003, 5, 149-152.	4.6	96
7	Urea derivatives of calix[4]arene 1,3-alternate: an anion receptor with profound negative allosteric effect. Tetrahedron Letters, 2001, 42, 1583-1586.	1.4	94
8	Novel anion receptors based on thiacalix[4] arene derivatives. Tetrahedron, 2004, 60, 11383-11390.	1.9	73
9	Novel biscalix[4]arene-based anion receptors. Tetrahedron, 2002, 58, 7207-7211.	1.9	69
10	Unprecedented <i>Meta</i> -Substitution of Calixarenes: Direct Way to Inherently Chiral Derivatives. Organic Letters, 2012, 14, 3628-3631.	4.6	68
11	Conformational flexibility of a novel tetraethylether of thiacalix[4]arene. A comparison with the "classical―methylene-bridged compounds. Tetrahedron Letters, 1999, 40, 373-376.	1.4	60
12	Synthesis and metal-binding properties of oligo-calixarenes. an approach towards the calix[4] arene-based dendrimers. Tetrahedron, 1995, 51, 7681-7696.	1.9	53
13	An oxacalix[2]arene[2]pyrimidine-bis(Zn-porphyrin) tweezer as a selective receptor towards fullerene C70. Tetrahedron Letters, 2010, 51, 2423-2426.	1.4	51
14	Synthesis and 1H NMR Complexation Study of Thiacalix[4] arene Tetraacetates. Collection of Czechoslovak Chemical Communications, 2000, 65, 757-771.	1.0	50
15	Photophysical Properties and Photoinduced Electron Transfer Within Host–Guest Complexes of 5,10,15,20-Tetrakis(4-N-methylpyridyl)porphyrin with Water-soluble Calixarenes and Cyclodextrins¶. Photochemistry and Photobiology, 2001, 74, 558.	2.5	50
16	Nonlinear Structureâ^'Affinity Relationships for Vapor Guest Inclusion by Solid Calixarenes. Journal of Physical Chemistry B, 2002, 106, 5845-5851.	2.6	50
17	Calix(n)alenes. Powerful Building-Blocks of Supramolecular Chemistry Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1995, 53, 963-974.	0.1	48
18	Structurally-unusual calix[4] arene derivatives generated by intra- and intermolecular McMurry reactions. Tetrahedron Letters, 1996, 37, 645-648.	1.4	47

#	Article	IF	CITATIONS
19	Calixarene-based metalloporphyrins: molecular tweezers for complexation of DABCO. Tetrahedron, 2003, 59, 2409-2415.	1.9	46
20	Unusual stoichiometry of urea-derivatized calix[4] arenes induced by anion complexation. Tetrahedron Letters, 2005, 46, 4469-4472.	1.4	46
21	Uncommon Regioselectivity in the Thiacalix[4]arene Series: Gross Formylation of the <i>Cone</i> Conformer. Journal of Organic Chemistry, 2010, 75, 407-411.	3.2	45
22	Unique self-assembly patterns based on thiacalix[4]arene–silver interactions. Tetrahedron, 2007, 63, 2244-2248.	1.9	44
23	High sensitive calixarene-based sensor for detection of dopamine by electrochemical and acoustic methods. Bioelectrochemistry, 2010, 80, 55-61.	4.6	41
24	NMR and X-ray analysis of 25,27-dimethoxythiacalix[4] arene: unique infinite channels in the solid state. Tetrahedron Letters, 2000, 41, 9339-9344.	1.4	40
25	Partially O-Alkylated Thiacalix[4]arenes:Â Synthesis, Molecular and Crystal Structures, Conformational Behavior. Journal of Organic Chemistry, 2007, 72, 7157-7166.	3.2	39
26	Uncommon Regioselectivity in Thiacalix [4] arene Formylation. Journal of Organic Chemistry, 2009, 74, 4592-4596.	3.2	39
27	Synthesis and optical resolution of naphthalene-containing inherently chiral calix[4] arenes derived by intramolecular ring closure or stapling of proximal phenyl units. Journal of the Chemical Society Perkin Transactions $1,1996,1945.$	0.9	38
28	Thermal isomerisation of 25,26,27,28-tetrapropoxy-2,8,14,20-tetrathiacalix[4] arene: isolation of all four conformers. Perkin Transactions II RSC, 2001, , 576-580.	1.1	38
29	Synthesis of (thia)calix[4]arene oligomers: towards calixarene-based dendrimers. Tetrahedron, 2004, 60, 3383-3391.	1.9	38
30	Meta Nitration of Thiacalixarenes. Journal of Organic Chemistry, 2010, 75, 8372-8375.	3.2	38
31	A biscalix[4]arene-based ditopic hard/soft receptor for K+/Ag+ complexation. Tetrahedron Letters, 2002, 43, 2857-2861.	1.4	36
32	Conformational behaviour of tetramethoxythiacalix[4] arenes: solution versus solid-state study. Tetrahedron, 2003, 59, 7581-7585.	1,9	36
33	Bis(amidopyridine)-linked calix[4]arenes: a novel type of receptor for dicarboxylic acids. Tetrahedron Letters, 2002, 43, 873-878.	1.4	35
34	Alkylation of thiacalix[4]arenes. Tetrahedron Letters, 2002, 43, 9621-9624.	1,4	35
35	The conformational behaviour of thiacalix[4]arenes: the pinched cone–pinched cone transition. Perkin Transactions II RSC, 2002, , 1922-1929.	1.1	34
36	Diazo coupling: an alternative method for the upper rim amination of thiacalix[4]arenes. Tetrahedron Letters, 2002, 43, 3665-3668.	1.4	34

#	Article	IF	Citations
37	Synthesis and spectroscopic properties of porphyrin-(thia)calix[4]arene conjugates. Tetrahedron, 2002, 58, 5475-5482.	1.9	33
38	Upper rim substitution of thiacalix[4]arene. Tetrahedron Letters, 2001, 42, 7107-7110.	1.4	32
39	Regioselective and stereoselective oxidation of thiacalix[4] arene tetraacetate: synthesis of all possible sulfinylcalix[4] arenes. Tetrahedron, 2001, 57, 4775-4779.	1.9	32
40	Unusual Intramolecular Bridging Reaction in Thiacalix[4]arene Series. Organic Letters, 2009, 11, 4188-4191.	4.6	32
41	Synthesis of Novel Calixsugars: Calix[4]arene–Monosaccharide Conjugates Based on Amide Bonds. Tetrahedron, 2000, 56, 1883-1887.	1.9	31
42	Anion receptors based on ureido-substituted thiacalix[4] arenes and calix[4] arenes. Tetrahedron, 2008, 64, 10075-10079.	1.9	31
43	S-Alkylation of Thiacalixarenes: A Long-Neglected Possibility in the Calixarene Family. Organic Letters, 2011, 13, 4032-4035.	4.6	31
44	Unprecedented formation of lactone derivatives in thiacalix[4] arene series. Chemical Communications, 2001, , 731-732.	4.1	30
45	meta-Bridged calix[4]arenes: a straightforward synthesis via organomercurial chemistry. Chemical Communications, 2013, 49, 6749.	4.1	30
46	Synthesis of a deep-cavity thiacalix[4]arene. Tetrahedron Letters, 2003, 44, 8093-8097.	1.4	29
47	Anion receptors based on ureido-thiacalix[4]arenes. Tetrahedron, 2006, 62, 1253-1257.	1.9	29
48	Systematic approach to new ligands for anion recognition based on ureido-calix[4] arenes. New Journal of Chemistry, 2008, 32, 1597.	2.8	29
49	Stereoselective alkylation of thiacalix[4] arenes. Tetrahedron Letters, 2005, 46, 461-464.	1.4	28
50	The synthesis and complexation of novel azosubstituted calix[4] arenes and thiacalix[4] arenes. Dyes and Pigments, 2008, 77, 646-652.	3.7	27
51	Dimercuration of Calix[4]arenes: Novel Substitution Pattern in Calixarene Chemistry. Organic Letters, 2014, 16, 138-141.	4.6	27
52	Synthesis of "macrocycle of macrocycles―containing 3â^¼8 calix[4]arene units. Unexpected generation of large super-macrocycles. Tetrahedron, 1996, 52, 12399-12408.	1.9	26
53	Calix[4]arenes with intramolecularly bridged meta positions prepared via Pd-catalysed double C–H activation. Chemical Communications, 2013, 49, 2798.	4.1	26
54	Anion recognition by diureido-calix[4] arenes in the 1,3-alternate conformation. New Journal of Chemistry, 2009, 33, 612.	2.8	25

#	Article	IF	Citations
55	<i>S</i> -Alkylation of Thiacalixarenes: How the Regio- and Stereoselectivities Depend on the Starting Conformation. Journal of Organic Chemistry, 2012, 77, 2272-2278.	3.2	24
56	Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2002, 254, 455-464.	1.5	22
57	Novel dendritic cores based on thiacalix[4]arene derivatives. Tetrahedron Letters, 2004, 45, 7145-7149.	1.4	22
58	Novel fullerene receptors based on calixarene–porphyrin conjugates. Tetrahedron Letters, 2007, 48, 477-481.	1.4	22
59	Inherently Chiral Upper-Rim-Bridged Calix[4]arenes Possessing a Seven Membered Ring. Organic Letters, 2017, 19, 2933-2936.	4.6	22
60	Synergistic solvent extraction of Eu, Sr and Cs into chlorobenzene solutions of the three conformers of tetrathiocalixarene and dicarbollide. Journal of Radioanalytical and Nuclear Chemistry, 2003, 258, 497-509.	1.5	21
61	Dynamics of circular hydrogen bond array in calix[4]arene in a nonpolar solvent: A nuclear magnetic resonance study. Journal of Chemical Physics, 2005, 122, 044506.	3.0	21
62	Neutral guests complexation with calix[4] arenes preorganised by intramolecular McMurry reaction. Tetrahedron Letters, 2003, 44, 4519-4522.	1.4	20
63	Thiacalix[4]arene derivatives with proximally bridged lower rim. Tetrahedron, 2005, 61, 9990-9995.	1.9	20
64	Regioselective upper rim substitution of calix[4] arenes. Tetrahedron, 2011, 67, 5213-5218.	1.9	20
65	Stereoselective oxidation of thiacalix[4]arenes with the NaNO3/CF3COOH system. Tetrahedron Letters, 2003, 44, 7333-7336.	1.4	19
66	Thiacalix[4]arene–porphyrin conjugates with high selectivity towards fullerene C70. Tetrahedron Letters, 2007, 48, 6620-6623.	1.4	19
67	Meta-arylation of calixarenes using organomercurial chemistry. Organic and Biomolecular Chemistry, 2013, 11, 5528.	2.8	19
68	Recognition of chiral anions using calix[4] arene-based ureido receptor in the 1,3-alternate conformation. Tetrahedron, 2014, 70, 477-483.	1.9	19
69	Nitration of thiacalix[4]arene derivatives. Tetrahedron Letters, 2002, 43, 7413-7417.	1.4	18
70	Anion recognition by calix[4] arene-based p-nitrophenyl amides. Tetrahedron Letters, 2012, 53, 678-680.	1.4	18
71	Anion complexation by calix[4]arene–TTF conjugates. Dyes and Pigments, 2012, 92, 668-673.	3.7	18
72	Metal-Controlled Aggregation-Deaggregation in Calix[4]arene-Based Self-Assemblies. Tetrahedron Letters, 1995, 36, 4829-4832.	1.4	17

#	Article	IF	Citations
73	Porphyrin/calixarene self-assemblies in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 18-25.	3.9	16
74	Anion binding by meta ureido-substituted thiacalix[4] arenes. Tetrahedron, 2011, 67, 8367-8372.	1.9	16
75	Solid State Calix[4]arene Tubular Assemblies Based on Cation–π Interactions. Supramolecular Chemistry, 2003, 15, 353-357.	1.2	15
76	Use of residual dipolar couplings in conformational analysis of meta-disubstituted calix[4]arenes. Chemical Communications, 2014, 50, 7590.	4.1	15
77	Synthesis of inherently chiral calixarenes via direct mercuration of the partial cone conformation. Chemical Communications, 2016, 52, 2366-2369.	4.1	15
78	Synthesis and sup > 1 < /sup > H NMR studies of vinyl-substituted calix [4] arene derivatives: Enhanced cation-i€ interactions with extended calix [4] arene i€-systems. Supramolecular Chemistry, 1997, 8, 333-344.	1.2	14
79	New Ligands for Enantioselective Recognition of Chiral Carboxylates Based on 1,1'-Binaphthalene-2,2'-diamine. Collection of Czechoslovak Chemical Communications, 2004, 69, 365-383.	1.0	14
80	Flip–flop Motion of Circular Hydrogen Bond Array in Thiacalix[4]arene. Supramolecular Chemistry, 2006, 18, 371-381.	1.2	14
81	Intramolecularly Bridged Calix[4]arenes with Pronounced Complexation Ability toward Neutral Compounds. Organic Letters, 2015, 17, 2788-2791.	4.6	14
82	Selectivity of original C-hexopyranosyl calix[4] arene conjugates towards lectins of different origin. Carbohydrate Research, 2018, 469, 60-72.	2.3	14
83	Simple preparation of 5-hydroxy-25,26,27,28-tetraalkyloxycalix[4]arenes: Synthesis of multiple calixarenes. Tetrahedron, 1999, 55, 12647-12654.	1.9	13
84	Solvent-Free Synthesis of Sulfonephthaleins, Sulfonefluoresceins and Fluoresceins Under Microwave Irradiation. Collection of Czechoslovak Chemical Communications, 2002, 67, 1779-1789.	1.0	13
85	Unexpected behaviour of monospirothiacalix[4]arene under acidic conditions. Tetrahedron Letters, 2009, 50, 6347-6350.	1.4	13
86	Binding of neutral molecules by p-nitrophenylureido substituted calix[4]arenes. Tetrahedron, 2010, 66, 8047-8050.	1.9	13
87	Regioselective Halogenation of Thiacalix[4] arenes in the <i>Cone</i> and <i>1,3-Alternate</i> Conformations. Organic Letters, 2014, 16, 5100-5103.	4.6	13
88	Application of RDC enhanced NMR spectroscopy in structural analysis of thiacalix[4]arene derivatives. Organic and Biomolecular Chemistry, 2015, 13, 9610-9618.	2.8	13
89	Synthesis and study of calix[4]arenes bearing azo moieties at the meta position. Tetrahedron, 2017, 73, 1230-1237.	1.9	13
90	New Calix[4]arene-Based Amides - Their Synthesis, Conformation, Complexation. Collection of Czechoslovak Chemical Communications, 2001, 66, 641-662.	1.0	12

#	Article	IF	CITATIONS
91	Two structural types of 1,3-alternate tetrapropoxycalix[4] arene derivatives in the solid state. Organic and Biomolecular Chemistry, 2005, 3, 2572.	2.8	12
92	Chiral anion recognition by a ureido-thiacalix[4] arene ligand immobilized in the 1,3-alternate conformation. New Journal of Chemistry, 2015, 39, 1382-1389.	2.8	12
93	Generation of Cryptophanes in Water by Disulfide Bridge Formation. European Journal of Organic Chemistry, 2017, 2017, 3795-3811.	2.4	12
94	Oligophenylene 2,4,6-triarylpyridines and analogous diaza-p-terphenyls, diaza-p-quaterphenyls and diaza-p-quinquephenyls with luminiscent activity. Collection of Czechoslovak Chemical Communications, 1989, 54, 462-472.	1.0	11
95	Formation and proof of stable bi-, tri- and tetraradical polyanions during the electrochemical reduction of cone-polynitrocalix[4]arenes. An ESR-UV-vis spectroelectrochemical study. Electrochimica Acta, 2014, 140, 572-578.	5.2	11
96	Influence of structure on electrochemical reduction of isomeric mono- and di-, nitro- or nitrosocalix [4] arenes. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2015, 146, 857-862.	1.8	11
97	Calix[4]arenes containing a ureido functionality on the lower rim as highly efficient receptors for anion recognition. New Journal of Chemistry, 2016, 40, 7935-7942.	2.8	11
98	Synthesis and conformational behaviour of lower-rim tetraacetylated thiacalix[4]arenes. Tetrahedron Letters, 2008, 49, 1026-1029.	1.4	10
99	Simple synthesis of calix [4] arenes in a 1,2-alternate conformation. Chemical Communications, 2008, , 1662.	4.1	10
100	Regioselective ipso-nitration of calix[4] arenes. Tetrahedron, 2012, 68, 4187-4193.	1.9	10
101	2,14-Dithiacalix[4]arene and its homooxa analogues: synthesis and dynamic NMR study of conformational behaviour. Chemical Communications, 2015, 51, 7051-7053.	4.1	10
102	Meta Substitution of Calixarenes. , 2016, , 43-73.		10
103	Anion receptors based on intramolecularly bridged calix[4]arenes bearing ureido functions. Tetrahedron, 2017, 73, 742-749.	1.9	10
104	Metal-controlled aggregation-deaggregation in calix[4]arene-based self-assemblies. Tetrahedron Letters, 1995, 36, 4829-4832.	1.4	10
105	2,4,6-Triphenylpyridine. Acta Crystallographica Section C: Crystal Structure Communications, 1994, 50, 1809-1811.	0.4	9
106	Azachalcone Derivatives and Their Bis Substituted Analogs as Novel Antimycobacterial Agents. Collection of Czechoslovak Chemical Communications, 1998, 63, 698-712.	1.0	9
107	Lysine dendrimers based on thiacalix[4]arene core moieties as molecular scaffolds for supramolecular host systems. New Journal of Chemistry, 2005, 29, 1386.	2.8	9
108	A general method for obtaining calix[4] arene derivatives in the 1,2-alternate conformation. Tetrahedron, 2016, 72, 6348-6355.	1.9	9

#	Article	IF	CITATIONS
109	Selective oxidation of thiacalix[4]arene (cone) to all corresponding sulfoxides. Tetrahedron Letters, 2016, 57, 3781-3784.	1.4	9
110	Shaping of calix[4] arenes via double bridging of the upper rim. CrystEngComm, 2016, 18, 4964-4970.	2.6	9
111	Synthesis of upper rim-double-bridged calix[4] arenes bearing seven membered rings and related compounds. RSC Advances, 2019, 9, 22017-22030.	3.6	9
112	Regioselective S _N Ar reaction of the phenoxathiin-based thiacalixarene as a route to a novel macrocyclic skeleton. Chemical Communications, 2020, 56, 78-81.	4.1	9
113	Preparation of New Organic Luminophores Based on 3,5-Diacetylpyridines. Collection of Czechoslovak Chemical Communications, 1992, 57, 1937-1946.	1.0	8
114	Regioselective deuteration of 25,27-dialkoxycalix[4] arenes. Tetrahedron Letters, 2011, 52, 2543-2546.	1.4	8
115	Anion receptors based on ureidocalix[4] arenes immobilised in the partial cone conformation. New Journal of Chemistry, 2013, 37, 220-227.	2.8	8
116	Self-assembly of 5,11,17,23-tetranitro-25,26,27,28-tetramethoxythiacalix[4] arene with neutral molecules and its use for anion recognition. Tetrahedron, 2013, 69, 1397-1402.	1.9	8
117	Regioselective alkylation of a methylene group via meta-bridging of calix[4]arenes. Chemical Communications, 2014, 50, 10112.	4.1	8
118	Fullerene recognition by 5-nitro-11,17,23,29-tetramethylcalix[5]arene. Tetrahedron Letters, 2015, 56, 1535-1538.	1.4	8
119	Direct C–H azidation of calix[4]arene as a novel method to access meta substituted derivatives. Tetrahedron Letters, 2015, 56, 5357-5361.	1.4	8
120	Rearrangement ofmeta-Bridged Calix[4]arenes Promoted by Internal Strain. Journal of Organic Chemistry, 2019, 84, 4229-4235.	3.2	8
121	Binding Studies on the Control of the Conformation and Self-assembly of a Calix[4]arenedicarboxylic Acid through Hydrogen Bonding Interactions. Supramolecular Chemistry, 2003, 15, 385-390.	1.2	7
122	Synthesis of Unique Cagelike Thiacalix[4] arene Derivatives in a 1,3-Alternate Conformation. Journal of Organic Chemistry, 2006, 71, 5404-5406.	3.2	7
123	Regioselective Friedel–Crafts acylation of calix[4]arenes. Tetrahedron, 2015, 71, 1959-1965.	1.9	7
124	Synthesis of calix[4]arene–cyclen conjugates. Tetrahedron, 2006, 62, 5748-5755.	1.9	6
125	Potentiometric Responses of Ion-Selective Electrodes Doped with Diureidocalix[4]arene towards Un-dissociated Benzoic Acid. Sensors, 2007, 7, 1655-1666.	3.8	6
126	Regio-/stereoselective formation of monosulfoxides from thiacalix[4]arenes in all possible conformations. Tetrahedron Letters, 2017, 58, 1687-1691.	1.4	6

#	Article	IF	CITATIONS
127	Structure elucidation of phenoxathiin-based thiacalix[4]arene conformations using NOE and RDC data. Tetrahedron, 2018, 74, 902-907.	1.9	6
128	Unexpected cleavage of upper rim-bridged calix[4] arenes leading to linear oligophenolic derivatives. Organic and Biomolecular Chemistry, 2018, 16, 838-843.	2.8	6
129	Chemoselective oxidation of phenoxathiin-based thiacalix[4] arene and the stereoselective alkylation of products. New Journal of Chemistry, 2018, 42, 20074-20086.	2.8	6
130	Ketone transformation as a pathway to inherently chiral rigidified calix[4] arenes. Chemical Communications, 2020, 56, 12773-12776.	4.1	6
131	Regioselective formation of the quinazoline moiety on the upper rim of calix[4] arene as a route to inherently chiral systems. New Journal of Chemistry, 2020, 44, 6490-6500.	2.8	6
132	NMR study of the new chiral calix[4] arenes. Journal of Molecular Structure, 2001, 563-564, 301-307.	3.6	5
133	Mercuration of thiacalix[4] arenes in the cone and 1,3-alternate conformations. Organic and Biomolecular Chemistry, 2014, 12, 5136-5143.	2.8	5
134	Mercuration of calix [4] arenes immobilized in the 1,2- and 1,3-alternate conformations. Tetrahedron Letters, 2017, 58, 1846-1850.	1.4	5
135	4-(5-Phenyl-1,3,4-oxadiazol-2-yl)biphenyl-4'-carboxylic acid: Its functional derivatives and their heterocyclization into 1,3-thiazine-6-thiones. Collection of Czechoslovak Chemical Communications, 1990, 55 , $2722-2730$.	1.0	4
136	Reorientational dynamics of two isomers of thiacalix[4]arene. Magnetic Resonance in Chemistry, 2003, 41, 819-827.	1.9	4
137	Thiacalixarenes: radiation stability and Eu/Am extraction in synergistic systems with COSANs. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304, 257-262.	1.5	4
138	Electrochemical Reduction and Intramolecular Electron Communication of Nitro Substituted Thiacalix[4] arenes. Electroanalysis, 2016, 28, 2861-2865.	2.9	4
139	meta-Bridged calix[4]arenes prepared by Friedel–Crafts alkylation. New Journal of Chemistry, 2017, 41, 14738-14745.	2.8	4
140	Unusual reactivity of upper-rim bridged calix [4] arenes $\hat{a} \in \text{``Friedel} \hat{a} \in \text{``Crafts alkylation via cleavage of the macrocyclic skeleton. Tetrahedron Letters, 2018, 59, 1757-1759.}$	1.4	4
141	Chemistry of 2,14-Dithiacalix[4]arene: Alkylation and Conformational Behavior of Peralkylated Products. Journal of Organic Chemistry, 2019, 84, 11572-11580.	3.2	4
142	Inherent chirality through a simple dialkylation of 2,14-dithiacalix[4]arene. New Journal of Chemistry, 2020, 44, 14496-14504.	2.8	4
143	Synthesis of 2,8-dithiacalix[4]arene based on fragment condensation. Tetrahedron Letters, 2021, 69, 152924.	1.4	4
144	2-(Biphenyl-4-yl)-5-phenyl-1,3,4-oxadiazole (PBD): Electrophilic 4'-substitution and following transformations. Collection of Czechoslovak Chemical Communications, 1991, 56, 1495-1504.	1.0	3

#	Article	IF	Citations
145	Intramolecular bridging of calix[4]arene dialdoximes. Tetrahedron Letters, 2015, 56, 5529-5532.	1.4	3
146	Unexpected formation of disulfide-based biscalix[4] arenes. Tetrahedron, 2016, 72, 760-766.	1.9	3
147	Arylation of thiacalix[4]arenes using organomercurial intermediates. New Journal of Chemistry, 2016, 40, 1104-1110.	2.8	3
148	Unexpected cleavage of thiacalix[4] arene sulfoxides. RSC Advances, 2017, 7, 53407-53414.	3.6	3
149	Synthesis of enantiomerically pure inherently chiral calix[4] arenes using the meta-substitution strategy. Tetrahedron Letters, 2019, 60, 260-263.	1.4	3
150	Chiral anion recognition using calix [4] arene-based ureido receptors in a $\langle i \rangle 1,3$ -alternate $\langle i \rangle$ conformation. Beilstein Journal of Organic Chemistry, 2020, 16, 2999-3007.	2.2	3
151	The Synthetic Use of 2-(4'-Acetylbiphenyl-4-yl)-5-phenyl-1,3,4-oxadiazole for Preparation of New Heterocyclic Luminophores. Collection of Czechoslovak Chemical Communications, 1992, 57, 385-392.	1.0	2
152	Synthesis of Luminophoric Derivatives of PBD Based on 2,5-Diaryl Substituted Thiazoles and Oxazoles. Collection of Czechoslovak Chemical Communications, 1993, 58, 2720-2728.	1.0	2
153	A Novel Calix[4]arene-Dipyrrole Conjugate Designed for Complexation of Ion Pairs. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2007, 62, 439-446.	0.7	2
154	Radiation and chemical stability of calix[4]arene derivatives as prospective liquid-liquid extractants. Radiochimica Acta, 2009, 97, .	1.2	2
155	meta-Bridged calix[4]arenes with the methylene moiety possessing in/out stereochemistry of substituents. New Journal of Chemistry, 2018, 42, 16646-16652.	2.8	2
156	Regio- and stereoselectivity of spirodienone formation in 2,14-dithiacalix[4]arene. New Journal of Chemistry, 2021, 45, 8563-8571.	2.8	2
157	Chemistry of 2,14-Dithiacalix[4]arene: Searching for the Missing Fifth Conformer. Journal of Organic Chemistry, 2021, 86, 9788-9801.	3.2	2
158	Nucleophile-induced transformation of phenoxathiin-based thiacalixarenes. Organic and Biomolecular Chemistry, 2021, 19, 8075-8085.	2.8	2
159	The Synthesis and NMR Study of 2,4-Diaryl-6-(fluoren-2-yl)pyridines. Collection of Czechoslovak Chemical Communications, 1992, 57, 375-384.	1.0	2
160	Synthesis of Luminophores Based on Thiazole Derivatives of PBD. Collection of Czechoslovak Chemical Communications, 1993, 58, 1898-1904.	1.0	1
161	Calixarenes and Their Analogues: Molecular Complexation. , 2004, , 145-152.		1
162	Azide Decomposition as a Pathway to Intramolecularly Upper Rim-Bridged Calix[4]arenes. Synthesis, 0, 54, .	2.3	1

#	Article	IF	CITATIONS
163	Breaking thiacalix[4]arene into pieces – a novel synthetic approach to higher calixarenes bearing mixed (–S–, –CH ₂ –) bridges. RSC Advances, 2021, 11, 36934-36941.	3.6	1
164	The Atropisomeric Dynamic Behaviour of Symmetrical N-acylated Amine-Bridged Calix $[4]$ arenes. New Journal of Chemistry, 0 , 1 , 1 .	2.8	1
165	Regioselective Lithiation of Tetrabromocalix[4]arenes: A Simple Way for the Desymmetrization of the Macrocyclic Skeleton. Journal of Organic Chemistry, 2022, 87, 10080-10089.	3.2	1
166	Solvent-Free Synthesis of Sulfonephthaleins, Sulfonefluoresceins and Fluoresceins under Microwave Irradiation ChemInform, 2003, 34, no.	0.0	0
167	Stereoselective Oxidation of Thiacalix[4]arenes with the NaNO3/CF3COOH System ChemInform, 2003, 34, no.	0.0	0
168	Synthesis of a Deep-Cavity Thiacalix[4]arene ChemInform, 2003, 34, no.	0.0	0
169	New Ligands for Enantioselective Recognition of Chiral Carboxylates Based on 1,1′-Binaphthalene-2,2′-diamine ChemInform, 2004, 35, no.	0.0	0