Michihiro Nagao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8912619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How cholesterol stiffens unsaturated lipid membranes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21896-21905.	7.1	212
2	Observation of Small Cluster Formation in Concentrated Monoclonal Antibody Solutions and Its Implications to Solution Viscosity. Biophysical Journal, 2014, 106, 1763-1770.	0.5	146
3	Heterogeneous Slow Dynamics of Imidazolium-Based Ionic Liquids Studied by Neutron Spin Echo. Journal of Physical Chemistry B, 2013, 117, 2773-2781.	2.6	122
4	Lipid Bilayers and Membrane Dynamics: Insight into Thickness Fluctuations. Physical Review Letters, 2012, 109, 058102.	7.8	103
5	Probing Elastic and Viscous Properties of Phospholipid Bilayers Using Neutron Spin Echo Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 4679-4684.	4.6	100
6	SANS Study on Pressure-Induced Phase Separation of Poly(N-isopropylacrylamide) Aqueous Solutions and Gels. Macromolecules, 2004, 37, 2909-2918.	4.8	93
7	Upgrade of the 32â€m small-angle neutron scattering instrument SANS-U. Journal of Applied Crystallography, 2005, 38, 1035-1037.	4.5	90
8	Neutron spin–echo investigations of membrane undulations in complex fluids involving amphiphiles. Journal of Physics and Chemistry of Solids, 1999, 60, 1375-1377.	4.0	72
9	Large-Angle X-ray Scattering and Small-Angle Neutron Scattering Study on Phase Separation of Acetonitrileâ~'Water Mixtures by Addition of NaCl. Journal of Physical Chemistry B, 2001, 105, 6236-6245.	2.6	66
10	Evaluation of Incoherent Neutron Scattering from Softmatter. Journal of the Physical Society of Japan, 2005, 74, 2728-2736.	1.6	63
11	Bending elasticity of saturated and monounsaturated phospholipid membranes studied by the neutron spin echo technique. Journal of Physics Condensed Matter, 2009, 21, 155104.	1.8	54
12	Scaling relationships for the elastic moduli and viscosity of mixed lipid membranes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23365-23373.	7.1	53
13	Nanostructures and Dynamics of Macromolecules Bound to Attractive Filler Surfaces. ACS Macro Letters, 2015, 4, 838-842.	4.8	51
14	Dynamical fluctuation of the mesoscopic structure in ternaryC12E5–water–n-octane amphiphilic system. Physical Review E, 2001, 63, 041402.	2.1	48
15	A Telescoping View of Solute Architectures in a Complex Fluid System. ACS Central Science, 2019, 5, 85-96.	11.3	48
16	Tuning Membrane Thickness Fluctuations in Model Lipid Bilayers. Biophysical Journal, 2015, 109, 106-112.	0.5	45
17	Pressure and temperature effects on the phase transition from a dense droplet to a lamellar structure in a ternary microemulsion. Journal of Chemical Physics, 2000, 112, 10608-10614.	3.0	43
18	SAXS, SANS and NSE Studies on "Unbound State―in DPPC/Water/CaCl2 System. Journal of the Physical Society of Japan, 2005, 74, 2853-2859.	1.6	43

2

#	Article	IF	CITATIONS
19	Bending modulus of lipid bilayers in a liquid-crystalline phase including an anomalous swelling regime estimated by neutron spin echo experiments. European Physical Journal E, 2008, 26, 217-23.	1.6	42
20	Observation of local thickness fluctuations in surfactant membranes using neutron spin echo. Physical Review E, 2009, 80, 031606.	2.1	41
21	Crossover from mean field to three-dimensional Ising critical behavior in a three-component microemulsion system. Physical Review E, 1996, 54, 629-633.	2.1	38
22	Heterogeneity of acetonitrile–water mixtures in the temperature range 279–307ÂK studied by small-angle neutron scattering technique. Journal of Molecular Liquids, 2007, 136, 147-155.	4.9	36
23	2D-Ising-like critical behavior in mixtures of water and 3-methylpyridine including antagonistic salt or ionic surfactant. Soft Matter, 2011, 7, 1334-1340.	2.7	36
24	Conformations of Ring Polystyrenes in Bulk Studied by SANS. Macromolecules, 2018, 51, 1539-1548.	4.8	35
25	Effects of temperature and pressure on phase transitions in a ternary microemulsion system. Journal of Chemical Physics, 2001, 115, 10036-10044.	3.0	34
26	A Mechanical Mechanism for Vitamin E Acetate in E-cigarette/Vaping-Associated Lung Injury. Chemical Research in Toxicology, 2020, 33, 2432-2440.	3.3	34
27	Small-Angle Neutron Scattering Investigation of Pressure Influence on the Structure of Weakly Charged Poly(N-isopropylacrylamide) Solutions and Gels. Macromolecules, 2004, 37, 8721-8729.	4.8	29
28	Membrane formation by preferential solvation of ions in mixture of water, 3-methylpyridine, and sodium tetraphenylborate. Journal of Chemical Physics, 2013, 139, 234905.	3.0	29
29	Evaluation of incoherent scattering intensity by transmission and sample thickness. Journal of Applied Crystallography, 2009, 42, 621-628.	4.5	28
30	Interlayer distance dependence of thickness fluctuations in a swollen lamellar phase. Soft Matter, 2011, 7, 6598.	2.7	28
31	Transverse lipid organization dictates bending fluctuations in model plasma membranes. Nanoscale, 2020, 12, 1438-1447.	5.6	28
32	Small-angle neutron scattering study of a pressure-induced phase transition in a ternary microemulsion composed of AOT,D2O,andn-decane. Physical Review E, 1999, 59, 3169-3176.	2.1	26
33	Mechanically Interlocked Structure of Polyrotaxane Investigated by Contrast Variation Small-Angle Neutron Scattering. Macromolecules, 2009, 42, 6327-6329.	4.8	26
34	Conformations of Ring Polystyrenes in Semidilute Solutions and in Linear Polymer Matrices Studied by SANS. Macromolecules, 2018, 51, 6836-6847.	4.8	26
35	High Pressure Cell for Small-Angle Neutron and Light Scattering Studies of Phase Transitions in Complex Liquids. Polymer Journal, 1997, 29, 931-939.	2.7	25
36	Quasi-Elastic Neutron Scattering Studies on Dynamics of Water Confined in Nanoporous Copper Rubeanate Hydrates. Journal of Physical Chemistry B, 2011, 115, 13563-13569.	2.6	25

#	Article	IF	CITATIONS
37	Effect of charged lidocaine on static and dynamic properties of model bio-membranes. Biophysical Chemistry, 2012, 160, 20-27.	2.8	25
38	Structural evolution and microscopic interactions in a threeâ€component amphiphilic microemulsion system. Journal of Chemical Physics, 1996, 105, 3264-3277.	3.0	24
39	Neutron Spinâ^'Echo Study of the Dynamic Behavior of Amphiphilic Diblock Copolymer Micelles in Aqueous Solution. Langmuir, 2000, 16, 9177-9185.	3.5	24
40	Dynamics of w/o AOT microemulsions studied by neutron spin echo. Journal of Physics and Chemistry of Solids, 1999, 60, 1359-1361.	4.0	23
41	Concentration fluctuations and cluster dynamics of 2-butoxyethanol–water mixtures by small-angle neutron scattering and neutron spin echo techniques. Journal of Molecular Liquids, 2005, 119, 125-131.	4.9	23
42	Membrane softening by nonsteroidal anti-inflammatory drugs investigated by neutron spin echo. Physical Chemistry Chemical Physics, 2019, 21, 20211-20218.	2.8	23
43	Pressure-induced structural phase transition of dense droplet microemulsions studied by small-angle x-ray scattering. Journal of Chemical Physics, 2001, 115, 9496-9502.	3.0	22
44	Small-Angle Neutron Scattering Investigations of Layerâ^'Block Dendrimers in Aqueous Solutions. Journal of Physical Chemistry B, 2003, 107, 1532-1539.	2.6	22
45	Dynamics of polyrotaxane investigated by neutron spin echo. Physica B: Condensed Matter, 2009, 404, 2600-2602.	2.7	22
46	Relationship between Viscosity and Acyl Tail Dynamics in Lipid Bilayers. Physical Review Letters, 2021, 127, 078102.	7.8	22
47	Effect of charge on the mechanical properties of surfactant bilayers. Soft Matter, 2016, 12, 9383-9390.	2.7	21
48	Interphase Structures and Dynamics near Nanofiller Surfaces in Polymer Solutions. Macromolecules, 2018, 51, 9462-9470.	4.8	21
49	Phospholipid Bilayer Softening Due to Hydrophobic Gold Nanoparticle Inclusions. Langmuir, 2018, 34, 13416-13425.	3.5	21
50	Collective motions of a network of wormlike micelles. Journal of Physics and Chemistry of Solids, 1999, 60, 1371-1373.	4.0	18
51	Fast and Slow Dynamics of Water-Soluble Dendrimers Consisting of Amido-Amine Repeating Units by Neutron Spinâ^'Echo. Journal of Physical Chemistry B, 2003, 107, 1353-1359.	2.6	17
52	Effect of ionization on the temperature- and pressure-induced phase transitions of poly(N-isopropylacrylamide) gels. Journal of Chemical Physics, 2004, 121, 9708-9715.	3.0	17
53	Structural and Dynamical Roles of Bound Polymer Chains in Rubber Reinforcement. Macromolecules, 2021, 54, 11032-11046.	4.8	17
54	Improvement of neutron spin echo spectrometer at C2-2 of JRR3M. Journal of Physics and Chemistry of Solids, 1999, 60, 1599-1601.	4.0	16

Michihiro Nagao

#	Article	IF	CITATIONS
55	Long-range periodic structure induced by coupling of the solvation effect and concentration fluctuation in water and 3-methylpyridine with salts. Chemical Physics Letters, 2006, 426, 61-65.	2.6	16
56	Relationship between Structural Relaxation, Shear Viscosity, and Ionic Conduction of LiPF ₆ /Propylene Carbonate Solutions. Journal of Physical Chemistry B, 2015, 119, 15675-15682.	2.6	16
57	Effect of Confinement on Membrane Undulation in a Swollen Lamellar Phase. Journal of the Physical Society of Japan, 2005, 74, 875-877.	1.6	14
58	Scaling of lipid membrane rigidity with domain area fraction. Soft Matter, 2019, 15, 2762-2767.	2.7	14
59	Interleaflet coupling of <i>n</i> -alkane incorporated bilayers. Physical Chemistry Chemical Physics, 2020, 22, 5418-5426.	2.8	14
60	Small-Angle Neutron Scattering Study on Aggregation in Acetonitrile–D2O and Acetonitrile–D2O–NaCl Mixtures. Chemistry Letters, 2000, 29, 878-879.	1.3	13
61	Temperature- and Pressure-dependences of Shape Fluctuations in a Ternary Microemulsion System. Journal of Neutron Research, 2002, 10, 131-136.	1.1	13
62	Small angle neutron scattering measurements of a nanostructured Mg2Niî—,D system. Physica B: Condensed Matter, 1996, 226, 370-374.	2.7	12
63	Interface between a Polysulfone and Polyamide As Studied by Combined Neutron Reflectivity and Small-Angle Neutron Scattering Techniques. Macromolecules, 2000, 33, 8375-8387.	4.8	12
64	Viscoelastic effects on early stage of spinodal decomposition in dynamically asymmetric polymer blends. Journal of Chemical Physics, 2006, 124, 104904.	3.0	12
65	Temperature and scattering contrast dependencies of thickness fluctuations in surfactant membranes. Journal of Chemical Physics, 2011, 135, 074704.	3.0	12
66	Processing–structure relationships of poly(ethylene glycol)-modified liposomes. Soft Matter, 2017, 13, 5228-5232.	2.7	12
67	Temperature and pressure effects on structural formations in a ternary microemulsion. Journal of Applied Crystallography, 2000, 33, 653-656.	4.5	11
68	Pressure-induced hexagonal phase in a ternary microemulsion system composed of a nonionic surfactant, water, and oil. Journal of Chemical Physics, 2005, 123, 054705.	3.0	11
69	Dynamics in Multicomponent Polyelectrolyte Solutions. Macromolecules, 2009, 42, 1293-1299.	4.8	11
70	The Effect of Tetraphenylphosphonium Chloride on Phase Behavior and Nanoscale Structures in a Mixture of D2O and 3-Methylpyridine. Chemistry Letters, 2012, 41, 1075-1077.	1.3	11
71	Tailoring Biomimetic Phosphorylcholine-Containing Block Copolymers as Membrane-Targeting Cellular Rescue Agents. Biomacromolecules, 2019, 20, 3385-3391.	5.4	11
72	Collective Mesoscale Dynamics of Liquid 1-Dodecanol Studied by Neutron Spin-Echo Spectroscopy with Isotopic Substitution and Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2019, 123, 239-246.	2.6	11

#	Article	IF	CITATIONS
73	A Pressure-Induced Phase Transition in a Ternary Microemulsion with an Assembly of a New High-Pressure Cell and Small-Angle X-Ray Scattering Apparatus. Japanese Journal of Applied Physics, 1999, 38, 951-956.	1.5	10
74	Effect of interlamellar interactions on shear induced multilamellar vesicle formation. Journal of Chemical Physics, 2017, 147, 034905.	3.0	10
75	Structure and dynamics of lipid membranes interacting with antivirulence end-phosphorylated polyethylene glycol block copolymers. Soft Matter, 2020, 16, 983-989.	2.7	10
76	Collective dynamics in lipid membranes containing transmembrane peptides. Soft Matter, 2021, 17, 5671-5681.	2.7	10
77	Quantitative analysis of "polymer-balls―in aqueous solutions by small-angle neutron scattering. Macromolecular Research, 2002, 10, 311-317.	2.4	9
78	Mechanism of Spontaneous Blebbing Motion of an Oil–Water Interface: Elastic Stress Generated by a Lamellar–Lamellar Transition. Langmuir, 2016, 32, 2891-2899.	3.5	9
79	Hydrodynamic interactions in the structural fluctuation of a ternary amphiphilic system C12E5/water/ n-octane. European Physical Journal E, 2001, 5, 329-336.	1.6	8
80	Viscoelastic effects in dynamics of concentration fluctuations in dynamically asymmetric polymer blends. Journal of Applied Crystallography, 2003, 36, 642-645.	4.5	8
81	Conformational dynamics of a multidomain protein by neutron scattering and computational analysis. Biophysical Journal, 2021, 120, 3341-3354.	0.5	8
82	Neutron Spin Echo Studies on Poly(Vinyl Alcohol) Gel in a Mixture of Dimethyl Sulfoxide and Water. Journal of Neutron Research, 2002, 10, 149-153.	1.1	6
83	Neutron Polarization Analysis for Biphasic Solvent Extraction Systems. Solvent Extraction and Ion Exchange, 2016, 34, 399-406.	2.0	6
84	Decoupling between the Temperature-Dependent Structural Relaxation and Shear Viscosity of Concentrated Lithium Electrolyte. Journal of Physical Chemistry B, 2017, 121, 8767-8773.	2.6	6
85	Enhanced dynamics in the anomalous melting regime of DMPG lipid membranes. Structural Dynamics, 2020, 7, 054704.	2.3	6
86	4. Collective dynamics in model biological membranes measured by neutron spin echo spectroscopy. , 2019, , 131-176.		6
87	Temperature- and pressure-induced phase transition in a ternary microemulsion system. Journal of Physics and Chemistry of Solids, 1999, 60, 1363-1365.	4.0	5
88	Neutron spin echo studies on dynamics of polymeric micelles. Journal of Physics and Chemistry of Solids, 1999, 60, 1367-1369.	4.0	5
89	Two Concentric Protein Shell Structure with Spikes of Silkworm Bombyx mori Cytoplasmic Polyhedrosis Virus Revealed by Small-Angle Neutron Scattering Using the Contrast Variation Method. Journal of Biochemistry, 1999, 125, 916-922.	1.7	5
90	Complex microphase separation and microdomain structures in polyisoprene-block-poly(D8-styrene)-block-poly(vinyl methyl ether) triblock terpolymer. Journal of Applied Crystallography, 2003, 36, 708-712.	4.5	5

#	Article	IF	CITATIONS
91	Small-angle neutron-scattering study on a structure of microemulsion mixed with polymer networks. Journal of Chemical Physics, 2005, 123, 144909.	3.0	5
92	Relevance of hydrogen bonded associates to the transport properties and nanoscale dynamics of liquid and supercooled 2-propanol. Physical Chemistry Chemical Physics, 2021, 23, 7220-7232.	2.8	5
93	Effect of encapsulated protein on the dynamics of lipid sponge phase: a neutron spin echo and molecular dynamics simulation study. Nanoscale, 2022, , .	5.6	5
94	Slow dynamics of n -butoxyethanol-water mixture by neutron spin echo technique. Applied Physics A: Materials Science and Processing, 2002, 74, s386-s388.	2.3	4
95	Neutron spin echo studies of the effects of temperature and pressure in a ternary microemulsion. Applied Physics A: Materials Science and Processing, 2002, 74, s534-s536.	2.3	4
96	Interactions, Diffusion, and Membrane Fluctuations in Concentrated Unilamellar Lipid Vesicle Solutions. Frontiers in Physics, 2022, 10, .	2.1	4
97	Probing the Link between Pancratistatin and Mitochondrial Apoptosis through Changes in the Membrane Dynamics on the Nanoscale. Molecular Pharmaceutics, 2022, 19, 1839-1852.	4.6	4
98	Neutron spin echo studies on structural phase transitions induced by temperature and pressure in a ternary microemulsion. , 1999, , .		2
99	Internal structural change of ganglioside micelle depending on temperature observed by neutron solvent contrast variation. Journal of Physics and Chemistry of Solids, 1999, 60, 1297-1299.	4.0	2
100	Phase Transition and Dynamics of Water Confined in Hydroxyethyl Copper Rubeanate Hydrate. Journal of the Physical Society of Japan, 2013, 82, SA010.	1.6	2
101	Effect of gold nanoparticle incorporation into oil-swollen surfactant lamellar membranes. Structural Dynamics, 2020, 7, 065102.	2.3	2
102	Neutron Spin Echo Studies on Effects of Temperature and Pressure In Dynamics of A Ternary Microemulsion. Studies in Surface Science and Catalysis, 2001, 132, 209-212.	1.5	1
103	Development of π and π/2 flippers for a neutron spin echo spectrometer. Journal of Neutron Research, 2007, 15, 83-89.	1.1	1
104	Detector area expansion at iNSE neutron spin echo spectrometer. Physica B: Condensed Matter, 2009, 404, 2607-2610.	2.7	1
105	Temperature- and Pressure-dependences of a Bending Modulus of Surfactant Monolayers in a Ternary Microemulsion Composed of AOT / D2O / decane. AIP Conference Proceedings, 2004, , .	0.4	0
106	Droplet density dependences of the static and dynamic structures in a ternary microemulsion system. AIP Conference Proceedings, 2004, , .	0.4	0
107	Full fitting analysis of the relative intermediate form factor measured by neutron spin echo. Physica B: Condensed Matter, 2009, 404, 2603-2606.	2.7	0
108	The Synergistic Effects of Lipids and Peptides on Membrane Dynamics. Biophysical Journal, 2017, 112, 381a.	0.5	0

#	Article	IF	CITATIONS
109	Measuring Membrane Dynamics on the Mesoscale. Biophysical Journal, 2021, 120, 101a.	0.5	0
110	Lipid Sponge Phase as a Matrix for Enzyme Encapsulation: Structure and Dynamics. Biophysical Journal, 2021, 120, 39a.	0.5	0
111	Experiences in the US. Hamon, 2012, 22, 43-45.	0.0	0
112	Spontaneous Motion of the Oil-water Interface Induced by the Generation of Surfactant Aggregates. Hamon, 2014, 24, 244-249.	0.0	0
113	Thickness Fluctuations in Surfactant Bilayers. Hamon, 2014, 24, 258-261.	0.0	0