Rosa M Varela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8912459/publications.pdf

Version: 2024-02-01

91 3,125 31 52 papers citations h-index g-index

91 91 91 2750 all docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Allelopathy—a natural alternative for weed control. Pest Management Science, 2007, 63, 327-348.	3.4	354
2	Structural Elucidation and Chemistry of a Novel Family of Bioactive Sesquiterpenes: Heliannuols. Journal of Organic Chemistry, 1994, 59, 8261-8266.	3.2	148
3	Bioactive terpenoids from sunflower leaves cv. Peredovick®. Phytochemistry, 2002, 61, 687-692.	2.9	108
4	Fractional Extraction of Compounds from Grape Seeds by Supercritical Fluid Extraction and Analysis for Antimicrobial and Agrochemical Activities. Journal of Agricultural and Food Chemistry, 1999, 47, 5044-5048.	5.2	95
5	Bioactive norsesquiterpenes from Helianthus annuus with potential allelopathic activity. Phytochemistry, 1998, 48, 631-636.	2.9	88
6	Allelochemicals from sunflower leaves cv. Peredovick. Phytochemistry, 1999, 52, 613-621.	2.9	80
7	Potential allelopathic sesquiterpene lactones from sunflower leaves. Phytochemistry, 1996, 43, 1205-1215.	2.9	78
8	New Bioactive Plant Heliannuols from Cultivar Sunflower Leaves 1. Journal of Natural Products, 1999, 62, 1636-1639.	3.0	76
9	Bioactive steroids from Oryza sativa L Steroids, 2006, 71, 603-608.	1.8	65
10	Bioactive flavonoids from Helianthus annuus cultivars. Phytochemistry, 1997, 45, 683-687.	2.9	63
11	Allelopathy as a new strategy for sustainable ecosystems development. Uchu Seibutsu Kagaku, 2003, 17, 18-23.	0.3	62
12	Heliannuol E. A novel bioactive sesquiterpene of the heliannane family. Tetrahedron Letters, 1999, 40, 4725-4728.	1.4	61
13	Bioactive Lignans from a Cultivar ofHelianthus annuus. Journal of Agricultural and Food Chemistry, 2004, 52, 6443-6447.	5.2	60
14	Isolation and Phytotoxicity of Terpenes from Tectona grandis. Journal of Chemical Ecology, 2010, 36, 396-404.	1.8	59
15	Bioactive Carotanes fromTrichodermavirens. Journal of Natural Products, 2000, 63, 1197-1200.	3.0	58
16	Phytotoxicity of Cardoon (<i>Cynara cardunculus</i>) Allelochemicals on Standard Target Species and Weeds. Journal of Agricultural and Food Chemistry, 2014, 62, 6699-6706.	5.2	58
17	Application of Hansch's Model to Capsaicinoids and Capsinoids: A Study Using the Quantitative StructureⰒActivity Relationship. A Novel Method for the Synthesis of Capsinoids. Journal of Agricultural and Food Chemistry, 2010, 58, 3342-3349.	5.2	57
18	Novel Bioactive Breviane Spiroditerpenoids from Penicillium brevicom pactum Dierckx. Journal of Organic Chemistry, 2000, 65, 9039-9046.	3.2	56

#	Article	IF	CITATIONS
19	Bioactive apocarotenoids from Tectona grandis. Phytochemistry, 2008, 69, 2708-2715.	2.9	55
20	Heliespirones B and C:  Two New Plant Heliespiranes with a Novel Spiro Heterocyclic Sesquiterpene Skeleton. Organic Letters, 2006, 8, 4513-4516.	4.6	51
21	The Use of Allelopathic Studies in the Search for Natural Herbicides. The Journal of Crop Improvement: Innovations in Practiceory and Research, 2001, 4, 237-255.	0.4	50
22	(+)-Brevione A. The first member of a novel family of bioactive spiroditerpenoids isolated from Penicillium brevicompactum Dierckx. Tetrahedron Letters, 2000, 41, 2683-2686.	1.4	47
23	Phytotoxicity of alkaloids, coumarins and flavonoids isolated from 11 species belonging to the Rutaceae and Meliaceae families. Phytochemistry Letters, 2014, 8, 226-232.	1.2	46
24	Synthesis of heliannane skeletons. Facile preparation of $(\hat{A}\pm)$ -heliannuol D. Tetrahedron, 2003, 59, 1679-1683.	1.9	44
25	Phytotoxins from <i>Tithonia diversifolia</i> . Journal of Natural Products, 2015, 78, 1083-1092.	3.0	44
26	Bioactive apocarotenoids annuionones F and G: structural revision of annuionones A, B and E. Phytochemistry, 2004, 65, 3057-3063.	2.9	42
27	Title is missing!. Journal of Chemical Ecology, 2000, 26, 2173-2186.	1.8	41
28	Sesquiterpene Lactones as Allelochemicals. Journal of Natural Products, 2006, 69, 795-800.	3.0	40
29	Phosphate acquisition efficiency in wheat is related to root:shoot ratio, strigolactone levels, and PHO2 regulation. Journal of Experimental Botany, 2019, 70, 5631-5642.	4.8	40
30	Exogenous strigolactones impact metabolic profiles and phosphate starvation signalling in roots. Plant, Cell and Environment, 2020, 43, 1655-1668.	5.7	35
31	Evaluation of various extraction techniques for obtaining bioactive extracts from pine seeds. Food and Bioproducts Processing, 2010, 88, 247-252.	3.6	34
32	Isolation of Bioactive Compounds from Sunflower Leaves (<i>Helianthus annuus</i> L.) Extracted with Supercritical Carbon Dioxide. Journal of Agricultural and Food Chemistry, 2015, 63, 6410-6421.	5.2	34
33	The Specialized Roles in Carotenogenesis and Apocarotenogenesis of the Phytoene Synthase Gene Family in Saffron. Frontiers in Plant Science, 2019, 10, 249.	3.6	32
34	The extraction procedure improves the allelopathic activity of cardoon (Cynara cardunculus var.) Tj ETQq0 0 0	rgBT/Overl	ock ₃₂ 0 Tf 50 1
35	Phytotoxic effect of bioactive compounds isolated from Myrcia tomentosa (Myrtaceae) leaves. Biochemical Systematics and Ecology, 2013, 46, 29-35.	1.3	31
36	Helikauranoside A, a New Bioactive Diterpene. Journal of Chemical Ecology, 2008, 34, 65-69.	1.8	30

#	Article	IF	Citations
37	Anthratectone and Naphthotectone, Two Quinones from Bioactive Extracts of Tectona grandis. Journal of Chemical Ecology, 2011, 37, 1341-1348.	1.8	30
38	Influence of Genotype and Harvest Time on the <i>Cynara cardunculus</i> L. Sesquiterpene Lactone Profile. Journal of Agricultural and Food Chemistry, 2019, 67, 6487-6496.	5.2	30
39	Structureâ^Activity Relationship Studies of Benzoxazinones and Related Compounds. Phytotoxicity on Echinochloa crus-galli(L.) P. Beauv Journal of Agricultural and Food Chemistry, 2005, 53, 4373-4380.	5.2	28
40	Ecological phytochemistry of Cerrado (Brazilian savanna) plants. Phytochemistry Reviews, 2013, 12, 839-855.	6.5	28
41	Allelopathy of Bracken Fern (Pteridium arachnoideum): New Evidence from Green Fronds, Litter, and Soil. PLoS ONE, 2016, 11, e0161670.	2.5	28
42	New Herbicide Models from Benzoxazinones:Â Aromatic Ring Functionalization Effects. Journal of Agricultural and Food Chemistry, 2006, 54, 9843-9851.	5.2	26
43	The Joint Action of Sesquiterpene Lactones from Leaves as an Explanation for the Activity of <i>Cynara cardunculus</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 6416-6424.	5.2	26
44	A new UHPLCâ€MS/MS method for the direct determination of strigolactones in root exudates and extracts. Phytochemical Analysis, 2019, 30, 110-116.	2.4	26
45	Bio-guided optimization of the ultrasound-assisted extraction of compounds from Annona glabra L. leaves using the etiolated wheat coleoptile bioassay. Ultrasonics Sonochemistry, 2014, 21, 1578-1584.	8.2	25
46	Ecological Relevance of the Major Allelochemicals in <i>Lycopersicon esculentum</i> Roots and Exudates. Journal of Agricultural and Food Chemistry, 2018, 66, 4638-4644.	5.2	25
47	Strigolactones: New players in the nitrogen–phosphorus signalling interplay. Plant, Cell and Environment, 2022, 45, 512-527.	5.7	25
48	Phytotoxicity evaluation of sesquiterpene lactones and diterpenes from species of the Decachaeta, Salvia and Podachaenium genera. Phytochemistry Letters, 2016, 18, 68-76.	1.2	24
49	Tectonoelins, new norlignans from a bioactive extract of Tectona grandis. Phytochemistry Letters, 2012, 5, 382-386.	1.2	23
50	Phytotoxicity Study on <i>Bidens sulphurea</i> Sch. Bip. as a Preliminary Approach for Weed Control. Journal of Agricultural and Food Chemistry, 2017, 65, 5161-5172.	5.2	23
51	Absolute configuration of bioactive expansolides A and B from Aspergillus fumigatus Fresenius. Tetrahedron Letters, 2003, 44, 941-943.	1.4	21
52	Facile Preparation of Bioactive <i>seco</i> Guaianolides and Guaianolides from <i>Artemisia gorgonum</i> and Evaluation of Their Phytotoxicity. Journal of Natural Products, 2012, 75, 1967-1973.	3.0	20
53	Combined Strategy for Phytotoxicity Enhancement of Benzoxazinones. Journal of Agricultural and Food Chemistry, 2010, 58, 2047-2053.	5.2	18
54	Effect of flavonoids isolated from Tridax procumbens on the growth and toxin production of Microcystis aeruginos. Aquatic Toxicology, 2019, 211, 81-91.	4.0	18

#	Article	IF	CITATIONS
55	A Study on the Phytotoxic Potential of the Seasoning Herb Marjoram (Origanum majorana L.) Leaves. Molecules, 2021, 26, 3356.	3.8	17
56	Easy Access to Alkoxy, Amino, Carbamoyl, Hydroxy, and Thiol Derivatives of Sesquiterpene Lactones and Evaluation of Their Bioactivity on Parasitic Weeds. Journal of Agricultural and Food Chemistry, 2019, 67, 10764-10773.	5 . 2	16
57	Effect of Shading on the Sesquiterpene Lactone Content and Phytotoxicity of Cultivated Cardoon Leaf Extracts. Journal of Agricultural and Food Chemistry, 2020, 68, 11946-11953.	5.2	16
58	One-Step Encapsulation of <i>ortho</i> -Disulfides in Functionalized Zinc MOF. Enabling Metal–Organic Frameworks in Agriculture. ACS Applied Materials & 1, 13, 7997-8005.	8.0	14
59	Strategies for the synthesis of canonical, non-canonical and analogues of strigolactones, and evaluation of their parasitic weed germination activity. Phytochemistry Reviews, 2022, 21, 1627-1659.	6.5	14
60	Bioactivity and quantitative analysis of isohexenylnaphthazarins in root periderm of two Echium spp.: E.Âplantagineum and E.Âgaditanum. Phytochemistry, 2017, 141, 162-170.	2.9	13
61	In Situ Eco Encapsulation of Bioactive Agrochemicals within Fully Organic Nanotubes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41925-41934.	8.0	13
62	Phytotoxicity Study of Ortho-Disubstituted Disulfides and Their Acyl Derivatives. ACS Omega, 2019, 4, 2362-2368.	3.5	13
63	Phytochemical Study of Safflower Roots (Carthamus tinctorius) on the Induction of Parasitic Plant Germination and Weed Control. Journal of Chemical Ecology, 2020, 46, 871-880.	1.8	13
64	Synthesis of Active Strigolactone Analogues Based on Eudesmane- and Guaiane-Type Sesquiterpene Lactones. Journal of Agricultural and Food Chemistry, 2020, 68, 9636-9645.	5 . 2	13
65	Chemical evidence for the effect of <i>Urochloa ruziziensis</i> on glyphosateâ€resistant soybeans. Pest Management Science, 2017, 73, 2071-2078.	3.4	13
66	Phytotoxic Potential of <i>Onopordum acanthium</i> L. (Asteraceae). Chemistry and Biodiversity, 2014, 11, 1247-1255.	2.1	12
67	Helikaurolides A–D with a Diterpene-Sesquiterpene Skeleton from Supercritical Fluid Extracts of <i>Helianthus annuus</i> L. var. Arianna. Organic Letters, 2015, 17, 4730-4733.	4.6	12
68	Facile synthesis of anhydrojudaicin and 11,13-dehydroanhydrojudaicin, two eudesmanolide-skeleton lactones with potential allelopathic activity. Phytochemistry Letters, 2019, 31, 229-236.	1.2	11
69	Allelopathic Activity of Strigolactones on the Germination of Parasitic Plants and Arbuscular Mycorrhizal Fungi Growth. Agronomy, 2021, 11, 2174.	3.0	11
70	Evaluation of the Allelopathic Potential of Leaf, Stem, and Root Extracts of <i>Ocotea pulchella </i> <scp>Nees et Mart</scp> . Chemistry and Biodiversity, 2016, 13, 1058-1067.	2.1	10
71	Helivypolide G. A novel dimeric bioactive sesquiterpene lactone. Tetrahedron Letters, 2004, 45, 6567-6570.	1.4	9
72	Aromaticâ€ringâ€functionalised benzoxazinones in the system <i>Oryza sativa–Echinochloa crusâ€galli</i> as biorational herbicide models. Pest Management Science, 2009, 65, 1104-1113.	3.4	9

#	Article	IF	Citations
73	Microwave-Assisted Extraction of Ricinine from Ricinus communis Leaves. Antioxidants, 2019, 8, 438.	5.1	9
74	Phytotoxic studies of naphthoquinone intermediates from the synthesis of the natural product Naphthotectone. Research on Chemical Intermediates, 2017, 43, 4387-4400.	2.7	8
75	Pharmacological Activities of Aminophenoxazinones. Molecules, 2021, 26, 3453.	3.8	8
76	Modified Benzoxazinones in the System <i>Oryza sativa</i> â^³ <i>Echinochloa crus-galli</i> : An Approach to the Development of Biorational Herbicide Models. Journal of Agricultural and Food Chemistry, 2008, 56, 9941-9948.	5.2	7
77	Allelopathic Potential of <i>Rapanea umbellata</i> Leaf Extracts. Chemistry and Biodiversity, 2013, 10, 1539-1548.	2.1	7
78	Hydrolysable Tannins and Biological Activities of Meriania hernandoi and Meriania nobilis (Melastomataceae). Molecules, 2019, 24, 746.	3.8	7
79	Acyl Derivatives of Eudesmanolides To Boost their Bioactivity: An Explanation of Behavior in the Cell Membrane Using a Molecular Dynamics Approach. ChemMedChem, 2021, 16, 1297-1307.	3.2	7
80	Encapsulation of Cynara Cardunculus Guaiane-type Lactones in Fully Organic Nanotubes Enhances Their Phytotoxic Properties. Journal of Agricultural and Food Chemistry, 2022, 70, 3644-3653.	5.2	7
81	Sunflower Metabolites Involved in Resistance Mechanisms against Broomrape. Agronomy, 2021, 11, 501.	3.0	6
82	Synthesis of Pertyolides A, B, and C: A Synthetic Procedure to C17-Sesquiterpenoids and a Study of Their Phytotoxic Activity. Journal of Natural Products, 2021, 84, 2295-2302.	3.0	6
83	Phytotoxicity of Triterpenes and Limonoids from the Rutaceae and Meliaceae. 5α,6β,8α,12α-Tetrahydro-28-norisotoonafolin – a Potent Phytotoxin from Toona ciliata. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	5
84	Evaluation of the Phytotoxicity of <i>Urochloa humidicola</i> Roots by Bioassays and Microscopic Analysis. Characterization of New Compounds. Journal of Agricultural and Food Chemistry, 2020, 68, 4851-4864.	5.2	5
85	Multifunctionalised benzoxazinones in the systems Oryza sativa-Echinochloa crus-galli and Triticum aestivum-Avena fatua as natural-product-based herbicide leads. Pest Management Science, 2010, 66, 1137-1147.	3.4	4
86	Preparation and Phytotoxicity Evaluation of 11,13-Dehydro <i>seco</i> Guaianolides. Journal of Natural Products, 2019, 82, 2501-2508.	3.0	4
87	SAR studies of epoxycurcuphenol derivatives on leukemia CT-CD4 cells. Bioorganic and Medicinal Chemistry, 2012, 20, 6662-6668.	3.0	2
88	Search of New Tools for Weed Control Using <i>Piptocarpha rotundifolia</i> , a Dominant Species in the Cerrado. Journal of Agricultural and Food Chemistry, 2021, 69, 8684-8694.	5.2	2
89	Evaluation of the phytotoxic and antifungal activity of <scp>C₁₇</scp> â€sesquiterpenoids as potential biopesticides. Pest Management Science, 2022, 78, 4240-4251.	3.4	2
90	Bioactive Diterpenes from the Brazilian Native Plant (Moquiniastrum pulchrum) and Their Application in Weed Control. Molecules, 2021, 26, 4632.	3.8	1

#	Article	IF	CITATIONS
91	Quantification of Strigolactones. Methods in Molecular Biology, 2020, 2083, 199-208.	0.9	1