Wim Vermeulen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8912364/publications.pdf

Version: 2024-02-01

13099 13379 17,806 156 68 130 citations h-index g-index papers 160 160 160 13520 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Understanding nucleotide excision repair and its roles in cancer and ageing. Nature Reviews Molecular Cell Biology, 2014, 15, 465-481.	37.0	865
2	DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science, 1993, 260, 58-63.	12.6	791
3	Sequential Assembly of the Nucleotide Excision Repair Factors In Vivo. Molecular Cell, 2001, 8, 213-224.	9.7	712
4	ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell, 1992, 71, 939-953.	28.9	698
5	A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature, 2006, 444, 1038-1043.	27.8	601
6	RNF168ÂUbiquitinates K13-15 on H2A/H2AX to Drive DNA Damage Signaling. Cell, 2012, 150, 1182-1195.	28.9	516
7	CLASPs Are CLIP-115 and -170 Associating Proteins Involved in the Regional Regulation of Microtubule Dynamics in Motile Fibroblasts. Cell, 2001, 104, 923-935.	28.9	462
8	A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell, 1990, 62, 777-791.	28.9	451
9	The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell, 1994, 79, 1093-1101.	28.9	445
10	A temperature-sensitive disorder in basal transcription and DNA repair in humans. Nature Genetics, 2001, 27, 299-303.	21.4	362
11	Nuclear Dynamics of PCNA in DNA Replication and Repair. Molecular and Cellular Biology, 2005, 25, 9350-9359.	2.3	361
12	Cockayne Syndrome A and B Proteins Differentially Regulate Recruitment of Chromatin Remodeling and Repair Factors to Stalled RNA Polymerase II In Vivo. Molecular Cell, 2006, 23, 471-482.	9.7	349
13	ATP-Dependent Chromatin Remodeling by the Cockayne Syndrome B DNA Repair-Transcription-Coupling Factor. Molecular and Cellular Biology, 2000, 20, 7643-7653.	2.3	334
14	Action of DNA Repair Endonuclease ERCC1/XPF in Living Cells. Science, 1999, 284, 958-961.	12.6	330
15	DNA Damage Response. Cold Spring Harbor Perspectives in Biology, 2011, 3, a000745-a000745.	5.5	311
16	A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nature Genetics, 2004, 36, 714-719.	21.4	307
17	The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway Genes and Development, 1996, 10, 1219-1232.	5.9	278
18	Human USP3 Is a Chromatin Modifier Required for S Phase Progression and Genome Stability. Current Biology, 2007, 17, 1972-1977.	3.9	251

#	Article	IF	CITATIONS
19	The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase Il-containing complex. EMBO Journal, 1997, 16, 5955-5965.	7.8	232
20	Heterochromatin protein 1 is recruited to various types of DNA damage. Journal of Cell Biology, 2009, 185, 577-586.	5.2	228
21	Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO Journal, 2009, 28, 1111-1120.	7.8	223
22	A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes and Development, 2003, 17, 1630-1645.	5.9	218
23	Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage. EMBO Journal, 2002, 21, 2030-2037.	7.8	217
24	DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. Genes and Development, 2006, 20, 1343-1352.	5.9	217
25	UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nature Genetics, 2012, 44, 598-602.	21.4	213
26	The core spliceosome as target and effector of non-canonical ATM signalling. Nature, 2015, 523, 53-58.	27.8	212
27	PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. Journal of Cell Biology, 2012, 199, 235-249.	5.2	197
28	Rapid Switching of TFIIH between RNA Polymerase I and II Transcription and DNA Repair In Vivo. Molecular Cell, 2002, 10, 1163-1174.	9.7	187
29	The DNA damage response to transcription stress. Nature Reviews Molecular Cell Biology, 2019, 20, 766-784.	37.0	184
30	First Reported Patient with Human ERCC1 Deficiency Has Cerebro-Oculo-Facio-Skeletal Syndrome with a Mild Defect in Nucleotide Excision Repair and Severe Developmental Failure. American Journal of Human Genetics, 2007, 80, 457-466.	6.2	182
31	Nucleotide excision repair–induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. Journal of Cell Biology, 2009, 186, 835-847.	5.2	167
32	TFIIH: a key component in multiple DNA transactions. Current Opinion in Genetics and Development, 1996, 6, 26-33.	3.3	158
33	Activation of multiple DNA repair pathways by sub-nuclear damage induction methods. Journal of Cell Science, 2007, 120, 2731-2740.	2.0	157
34	TFIIH with Inactive XPD Helicase Functions in Transcription Initiation but Is Defective in DNA Repair. Journal of Biological Chemistry, 2000, 275, 4258-4266.	3.4	153
35	ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics and Chromatin, 2012, 5, 4.	3.9	152
36	Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO Journal, 1997, 16, 7444-7456.	7.8	151

3

#	Article	IF	CITATIONS
37	Mammalian Transcription-Coupled Excision Repair. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012625-a012625.	5.5	149
38	Macromolecular dynamics in living cell nuclei revealed by fluorescence redistribution after photobleaching. Histochemistry and Cell Biology, 2001, 115, 13-21.	1.7	148
39	Global Regulation of Promoter Melting in Naive Lymphocytes. Cell, 2013, 153, 988-999.	28.9	145
40	Xeroderma Pigmentosum Group A Protein Loads as a Separate Factor onto DNA Lesions. Molecular and Cellular Biology, 2003, 23, 5755-5767.	2.3	140
41	Enhanced Chromatin Dynamics by FACT Promotes Transcriptional Restart after UV-Induced DNA Damage. Molecular Cell, 2013, 51, 469-479.	9.7	127
42	DNA damage stabilizes interaction of CSB with the transcription elongation machinery. Journal of Cell Biology, 2004, 166, 27-36.	5.2	126
43	XAB2, a Novel Tetratricopeptide Repeat Protein Involved in Transcription-coupled DNA Repair and Transcription. Journal of Biological Chemistry, 2000, 275, 34931-34937.	3.4	125
44	Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder. Nature Genetics, 2000, 26, 307-313.	21.4	123
45	Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage-binding protein Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4053-4056.	7.1	119
46	Three Unusual Repair Deficiencies Associated with Transcription Factor BTF2(TFIIH): Evidence for the Existence of a Transcription Syndrome. Cold Spring Harbor Symposia on Quantitative Biology, 1994, 59, 317-329.	1.1	119
47	Stochastic and reversible assembly of a multiprotein DNA repair complex ensures accurate target site recognition and efficient repair. Journal of Cell Biology, 2010, 189, 445-463.	5.2	114
48	Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. Journal of Cell Science, 2013, 126, 889-903.	2.0	113
49	Involvement of Global Genome Repair, Transcription Coupled Repair, and Chromatin Remodeling in UV DNA Damage Response Changes during Development. PLoS Genetics, 2010, 6, e1000941.	3.5	111
50	Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. Journal of Cell Science, 2008, 121, 2850-2859.	2.0	109
51	A Ubiquitin-Binding Domain in Cockayne Syndrome B Required for Transcription-Coupled Nucleotide Excision Repair. Molecular Cell, 2010, 38, 637-648.	9.7	109
52	Biochemical and Biological Characterization of Wild-type and ATPase-deficient Cockayne Syndrome B Repair Protein. Journal of Biological Chemistry, 1998, 273, 11844-11851.	3.4	98
53	ISWI chromatin remodeling complexes in the DNA damage response. Cell Cycle, 2014, 13, 3016-3025.	2.6	97
54	Dynamic in vivo interaction of DDB2 E3 ubiquitin ligase with UV-damaged DNA is independent of damage-recognition protein XPC. Journal of Cell Science, 2007, 120, 2706-2716.	2.0	95

#	Article	IF	CITATIONS
55	Nucleotide excision repair–initiating proteins bind to oxidative DNA lesions in vivo. Journal of Cell Biology, 2012, 199, 1037-1046.	5.2	95
56	Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair. Nucleic Acids Research, 2013, 41, 3115-3129.	14.5	91
57	SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair. Nature Communications, 2015, 6, 7499.	12.8	90
58	The CSB Protein Actively Wraps DNA. Journal of Biological Chemistry, 2005, 280, 4722-4729.	3.4	89
59	Recruitment of the Nucleotide Excision Repair Endonuclease XPG to Sites of UV-Induced DNA Damage Depends on Functional TFIIH. Molecular and Cellular Biology, 2006, 26, 8868-8879.	2.3	88
60	The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor. Nucleic Acids Research, 1997, 25, 2274-2283.	14.5	82
61	Chromatin structure and DNA damage repair. Epigenetics and Chromatin, 2008, 1, 9.	3.9	82
62	A 3′→ 5′ XPB Helicase Defect in Repair/Transcription Factor TFIIH of Xeroderma Pigmentosum Group B Affects Both DNA Repair and Transcription. Journal of Biological Chemistry, 1996, 271, 15898-15904.	3.4	81
63	Dynamic Interaction of TTDA with TFIIH Is Stabilized by Nucleotide Excision Repair in Living Cells. PLoS Biology, 2006, 4, e156.	5.6	79
64	An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell, 2006, 10, 121-132.	16.8	78
65	Base and nucleotide excision repair facilitate resolution of platinum drugs-induced transcription blockage. Nucleic Acids Research, 2018, 46, 9537-9549.	14.5	75
66	SWI/SNF: Complex complexes in genome stability and cancer. DNA Repair, 2019, 77, 87-95.	2.8	74
67	The cloned human DNA excision repair gene ERCC-1 fails to correct xeroderma pigmentosum complementation groups A through I. Mutation Research DNA Repair, 1989, 217, 83-92.	3.7	73
68	DNA damage repair: anytime, anywhere?. Current Opinion in Cell Biology, 2006, 18, 240-246.	5.4	71
69	UV-DDB-dependent regulation of nucleotide excision repair kinetics in living cells. DNA Repair, 2009, 8, 767-776.	2.8	71
70	Effect of Proliferating Cell Nuclear Antigen Ubiquitination and Chromatin Structure on the Dynamic Properties of the Y-family DNA Polymerases. Molecular Biology of the Cell, 2008, 19, 5193-5202.	2.1	70
71	Cloning and characterization of p52, the fifth subunit of the core of the transcription/DNA repair factor TFIIH. EMBO Journal, 1997, 16, 1093-1102.	7.8	69
72	Recognition of DNA damage by XPC coincides with disruption of the XPC–RAD23 complex. Journal of Cell Biology, 2012, 196, 681-688.	5.2	65

#	Article	IF	CITATIONS
73	<i>In vivo</i> dynamics of chromatin-associated complex formation in mammalian nucleotide excision repair. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15933-15937.	7.1	64
74	Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity. EMBO Journal, 2004, 23, 4835-4846.	7.8	63
75	Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair, 2004, 3, 1285-1295.	2.8	63
76	Definition of a Short Region of XPG Necessary for TFIIH Interaction and Stable Recruitment to Sites of UV Damage. Molecular and Cellular Biology, 2004, 24, 10670-10680.	2.3	62
77	Mathematical Modeling of Nucleotide Excision Repair Reveals Efficiency of Sequential Assembly Strategies. Molecular Cell, 2005, 19, 679-690.	9.7	60
78	Mislocalization of XPF-ERCC1 Nuclease Contributes to Reduced DNA Repair in XP-F Patients. PLoS Genetics, 2010, 6, e1000871.	3.5	57
79	DNA Repair and Ultraviolet Mutagenesis in Cells From a New Patient With Xeroderma Pigmentosum Group G and Cockayne Syndrome Resemble Xeroderma Pigmentosum Cells. Journal of Investigative Dermatology, 1996, 107, 647-653.	0.7	55
80	Replication Factor C Recruits DNA Polymerase $\hat{\Gamma}$ to Sites of Nucleotide Excision Repair but Is Not Required for PCNA Recruitment. Molecular and Cellular Biology, 2010, 30, 4828-4839.	2.3	55
81	Human ISWI complexes are targeted by SMARCA5 ATPase and SLIDE domains to help resolve lesion-stalled transcription. Nucleic Acids Research, 2014, 42, 8473-8485.	14.5	54
82	The transcription-coupled DNA repair-initiating protein CSB promotes XRCC1 recruitment to oxidative DNA damage. Nucleic Acids Research, 2018, 46, 7747-7756.	14.5	54
83	Dynamics of Relative Chromosome Position during the Cell Cycle. Molecular Biology of the Cell, 2005, 16, 769-775.	2.1	53
84	Development of a new easy complementation assay for DNA repair deficient human syndromes using cloned repair genes. Carcinogenesis, 1995, 16, 1003-1009.	2.8	49
85	Differentiation Driven Changes in the Dynamic Organization of Basal Transcription Initiation. PLoS Biology, 2009, 7, e1000220.	5.6	48
86	Tissue specific response to DNA damage: C. elegans as role model. DNA Repair, 2015, 32, 141-148.	2.8	47
87	Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. Journal of Microscopy, 2008, 231, 97-104.	1.8	45
88	ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17927-17932.	7.1	45
89	Nucleotide Excision Repair in <i>Caenorhabditis elegans </i> . Molecular Biology International, 2011, 2011, 1-12.	1.7	44
90	Dynamics of mammalian NER proteins. DNA Repair, 2011, 10, 760-771.	2.8	43

#	Article	IF	Citations
91	<scp>DNA</scp> damageâ€induced replication stress results in <scp>PA</scp> 200â€proteasomeâ€mediated degradation of acetylated histones. EMBO Reports, 2018, 19, .	4.5	42
92	Bi-allelic TARS Mutations Are Associated with Brittle Hair Phenotype. American Journal of Human Genetics, 2019, 105, 434-440.	6.2	42
93	Assembly of multiprotein complexes that control genome function. Journal of Cell Biology, 2009, 185, 21-26.	5.2	41
94	Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability. Nature Cell Biology, 2021, 23, 608-619.	10.3	41
95	Transcriptional Healing. Cell, 2000, 101, 447-450.	28.9	40
96	UVSSA and USP7, a new couple in transcription-coupled DNA repair. Chromosoma, 2013, 122, 275-284.	2.2	39
97	DNA damage leads to progressive replicative decline but extends the life span of long-lived mutant animals. Cell Death and Differentiation, 2013, 20, 1709-1718.	11.2	39
98	Ubiquitin and TFIIH-stimulated DDB2 dissociation drives DNA damage handover in nucleotide excision repair. Nature Communications, 2020, 11, 4868.	12.8	39
99	Trichothiodystrophy causative TFIIE \hat{l}^2 mutation affects transcription in highly differentiated tissue. Human Molecular Genetics, 2017, 26, 4689-4698.	2.9	38
100	When machines get stuck?obstructed RNA polymerase II: displacement, degradation or suicide. BioEssays, 2002, 24, 780-784.	2.5	36
101	Affinity Purification of Human DNA Repair/Transcription Factor TFIIH Using Epitope-tagged Xeroderma Pigmentosum B Protein. Journal of Biological Chemistry, 1998, 273, 1092-1098.	3.4	35
102	Spatial organization of nucleotide excision repair proteins after UV-induced DNA damage in the human cell nucleus. Journal of Cell Science, 2009, 122, 83-91.	2.0	35
103	Intra- and Intercellular Trafficking of the Foamy Virus Auxiliary Bet Protein. Journal of Virology, 2002, 76, 3388-3394.	3.4	34
104	Cellular Concentrations of DDB2 Regulate Dynamic Binding of DDB1 at UV-Induced DNA Damage. Molecular and Cellular Biology, 2008, 28, 7402-7413.	2.3	33
105	Disruption of TTDA Results in Complete Nucleotide Excision Repair Deficiency and Embryonic Lethality. PLoS Genetics, 2013, 9, e1003431.	3.5	32
106	Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins. Nature Communications, 2022, 13, 974.	12.8	32
107	The DNA repair-ubiquitin-associated HR23 proteins are constituents of neuronal inclusions in specific neurodegenerative disorders without hampering DNA repair. Neurobiology of Disease, 2006, 23, 708-716.	4.4	31
108	Cysteinyl-tRNA Synthetase Mutations Cause a Multi-System, Recessive Disease That Includes Microcephaly, Developmental Delay, and Brittle Hair and Nails. American Journal of Human Genetics, 2019, 104, 520-529.	6.2	31

#	Article	IF	Citations
109	A ubiquitylation site in Cockayne syndrome B required for repair of oxidative DNA damage, but not for transcription-coupled nucleotide excision repair. Nucleic Acids Research, 2016, 44, 5246-5255.	14.5	30
110	Transient correction of excision repair defects in fibroblasts of 9 xeroderma pigmentosum complementation groups by microinjection of crude human cell extracts. Mutation Research - DNA Repair Reports, 1986, 165, 199-206.	1.8	29
111	Regulation of UV-induced DNA damage response by ubiquitylation. DNA Repair, 2007, 6, 1231-1242.	2.8	29
112	Xeroderma pigmentosum group A correcting protein from calf thymus. Mutation Research DNA Repair, 1992, 274, 211-224.	3.7	28
113	Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes. Nucleic Acids Research, 2002, 30, 4720-4727.	14.5	28
114	Ubiquitin at work: The ubiquitous regulation of the damage recognition step of NER. Experimental Cell Research, 2014, 329, 101-109.	2.6	27
115	TRiC controls transcription resumption after UV damage by regulating Cockayne syndrome protein A. Nature Communications, 2018, 9, 1040.	12.8	27
116	Mammalian nucleotide excision repair and syndromes. Biochemical Society Transactions, 1997, 25, 309-315.	3.4	26
117	An immunoaffinity purification method for the proteomic analysis of ubiquitinated protein complexes. Analytical Biochemistry, 2013, 440, 227-236.	2.4	25
118	TTDA: Big impact of a small protein. Experimental Cell Research, 2014, 329, 61-68.	2.6	25
119	DNA damage sensitivity of SWI/SNF-deficient cells depends on TFIIH subunit p62/GTF2H1. Nature Communications, 2018, 9, 4067.	12.8	25
120	Repair protein persistence at DNA lesions characterizes XPF defect with Cockayne syndrome features. Nucleic Acids Research, 2018, 46, 9563-9577.	14.5	25
121	Cloning of a human homolog of the yeast nucleotide excision repair gene MMS19 and interaction with transcription repair factor TFIIH via the XPB and XPD helicases. Nucleic Acids Research, 2000, 28, 4506-4513.	14.5	24
122	Kinetics of endogenous mouse FEN1 in base excision repair. Nucleic Acids Research, 2012, 40, 9044-9059.	14.5	22
123	Correction by the ERCC2 gene of UV sensitivity and repair deficiency phenotype in a subset of trichothiodystrophy cells. Carcinogenesis, 1994, 15, 1493-1498.	2.8	20
124	Tissue-Specific DNA Repair Activity of ERCC-1/XPF-1. Cell Reports, 2021, 34, 108608.	6.4	20
125	Protein instability associated with <i>AARS1</i> and <i>MARS1</i> mutations causes trichothiodystrophy. Human Molecular Genetics, 2021, 30, 1711-1720.	2.9	20
126	Gearing up chromatin. Nucleus, 2014, 5, 203-210.	2.2	19

#	Article	IF	Citations
127	Crosslinking of nucleotide excision repair proteins with DNA containing photoreactive damages. Bioorganic Chemistry, 2008, 36, 77-84.	4.1	17
128	Influence of the live cell DNA marker DRAQ5 on chromatin-associated processes. DNA Repair, 2010, 9, 848-855.	2.8	17
129	Generation of DNA single-strand displacement by compromised nucleotide excision repair. EMBO Journal, 2012, 31, 3550-3563.	7.8	17
130	The Transcription Cycle In Vivo. Molecular Cell, 2002, 10, 1264-1266.	9.7	16
131	Fluorescence Correlation Spectroscopy of the Binding of Nucleotide Excision Repair Protein XPC-hHr23B with DNA Substrates. Journal of Fluorescence, 2008, 18, 987-995.	2.5	16
132	Amplification of unscheduled DNA synthesis signal enables fluorescence-based single cell quantification of transcription-coupled nucleotide excision repair. Nucleic Acids Research, 2017, 45, gkw1360.	14.5	16
133	Active DNA damage eviction by HLTF stimulates nucleotide excision repair. Molecular Cell, 2022, 82, 1343-1358.e8.	9.7	16
134	Microinjected photoreactivating enzymes from Anacystis and Saccharomyces monomerize dimers in chromatin of human cells. Mutation Research - DNA Repair Reports, 1985, 146, 71-77.	1.8	14
135	Interaction of nucleotide excision repair factors RPA and XPA with DNA containing bulky photoreactive groups imitating damages. Biochemistry (Moscow), 2006, 71, 270-278.	1.5	14
136	Bidirectional coupling of splicing and ATM signaling in response to transcription-blocking DNA damage. RNA Biology, 2016, 13, 272-278.	3.1	14
137	Microinjection of Escherichia coli UvrA, B, C and D proteins into fibroblasts of xeroderma pigmentosum complementation groups A and C does not result in restoration of UV-induced unscheduled DNA synthesis. Mutation Research - DNA Repair Reports, 1986, 166, 89-98.	1.8	13
138	Slowly Progressing Nucleotide Excision Repair in Trichothiodystrophy Group A Patient Fibroblasts. Molecular and Cellular Biology, 2011, 31, 3630-3638.	2.3	13
139	Transcription-coupled nucleotide excision repair is coordinated by ubiquitin and SUMO in response to ultraviolet irradiation. Nucleic Acids Research, 2020, 48, 231-248.	14.5	10
140	Erythropoietic Defect Associated with Reduced Cell Proliferation in Mice Lacking the 26S Proteasome Shuttling Factor Rad23b. Molecular and Cellular Biology, 2013, 33, 3879-3892.	2.3	9
141	HR23B pathology preferentially co-localizes with p62, pTDP-43 and poly-GA in C9ORF72-linked frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2019, 7, 39.	5.2	9
142	Unscheduled DNA synthesis in xeroderman pigmentosum cells after microinjection of yeast photoreactivity enzyme. Mutation Research - DNA Repair Reports, 1986, 165, 109-115.	1.8	8
143	Check, Check …Triple Check: Multi-Step DNA Lesion Identification by Nucleotide Excision Repair. Molecular Cell, 2015, 59, 885-886.	9.7	8
144	XPG: a multitasking genome caretaker. Cellular and Molecular Life Sciences, 2022, 79, 166.	5.4	7

#	Article	IF	CITATIONS
145	Pollitt syndrome patients carry mutation in TTDN1. Meta Gene, 2014, 2, 616-618.	0.6	6
146	Cell-type specific concentration regulation of the basal transcription factor TFIIH in XPBy/y mice model. Cancer Cell International, 2019, 19, 237.	4.1	6
147	Noncanonical ATM Activation and Signaling in Response to Transcription-Blocking DNA Damage. Methods in Molecular Biology, 2017, 1599, 347-361.	0.9	5
148	USP44 Stabilizes DDB2 to Facilitate Nucleotide Excision Repair and Prevent Tumors. Frontiers in Cell and Developmental Biology, 2021, 9, 663411.	3.7	5
149	Quantitative Fluorescence Correlation Spectroscopy Reveals a 1000-Fold Increase in Lifetime of Protein Functionality. Biophysical Journal, 2008, 95, 3439-3446.	0.5	4
150	ERCC1–XPF targeting to psoralen–DNA crosslinks depends on XPA and FANCD2. Cellular and Molecular Life Sciences, 2020, 77, 2005-2016.	5.4	4
151	Differential binding kinetics of replication protein A during replication and the pre- and post-incision steps of nucleotide excision repair. DNA Repair, 2014, 24, 46-56.	2.8	3
152	C. elegans TFIIH subunit GTF-2H5/TTDA is a non-essential transcription factor indispensable for DNA repair. Communications Biology, 2021, 4, 1336.	4.4	3
153	Focus on foci: DNA damage foci, structures without a function?. Cell Cycle, 2009, 8, 3809-3815.	2.6	2
154	Nucleotide excision repair syndromes: molecular basis and clinical symptoms., 1995,, 71-77.		1
155	Single-molecule fluorescence microscopy on nucleotide excision repair complexes using GFP fusion proteins. , 2000, , .		0
156	Recombining DNA Damage Repair, Basal Transcription, and Human Syndromes., 1997,, 83-96.		0