Domagoj Vucic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8911455/publications.pdf

Version: 2024-02-01

66343 82547 13,732 74 42 72 citations h-index g-index papers 75 75 75 17349 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	XIAP promotes melanoma growth by inducing tumour neutrophil infiltration. EMBO Reports, 2022, 23, e53608.	4.5	12
2	RIP1 post-translational modifications. Biochemical Journal, 2022, 479, 929-951.	3.7	14
3	Genetic inactivation of RIP1 kinase does not ameliorate disease in a mouse model of ALS. Cell Death and Differentiation, 2021, 28, 915-931.	11.2	21
4	Impaired RIPK1 ubiquitination sensitizes mice to TNF toxicity and inflammatory cell death. Cell Death and Differentiation, 2021, 28, 985-1000.	11.2	41
5	Kinase inhibition in autoimmunity and inflammation. Nature Reviews Drug Discovery, 2021, 20, 39-63.	46.4	220
6	Genetic inactivation of RIP1 kinase activity in rats protects against ischemic brain injury. Cell Death and Disease, 2021, 12, 379.	6.3	9
7	Primary Amine Tethered Small Molecules Promote the Degradation of X-Linked Inhibitor of Apoptosis Protein. Journal of the American Chemical Society, 2021, 143, 10571-10575.	13.7	7
8	A solid-phase approach for the synthesis of muramyl dipeptide conjugates for detection of NOD2. Bioorganic Chemistry, 2021, 116, 105360.	4.1	2
9	Immunoblot Analysis of the Regulation of TNF Receptor Family-Induced NF-κB Signaling by Proteins. Methods in Molecular Biology, 2021, 2366, 109-123.	0.9	1
10	Cell death pathways: intricate connections and disease implications. EMBO Journal, 2021, 40, e106700.	7.8	149
11	Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death and Differentiation, 2021, 28, 591-605.	11.2	142
12	RIP1 inhibition blocks inflammatory diseases but not tumor growth or metastases. Cell Death and Differentiation, 2020, 27, 161-175.	11.2	100
13	Regulation of Cell Death and Immunity by XIAP. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036426.	5. 5	47
14	The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins. Nature Genetics, 2020, 52, 106-117.	21.4	139
15	The kinase IRAK4 promotes endosomal TLR and immune complex signaling in B cells and plasmacytoid dendritic cells. Science Signaling, 2020, 13, .	3.6	22
16	The Balance of TNF Mediated Pathways Regulates Inflammatory Cell Death Signaling in Healthy and Diseased Tissues. Frontiers in Cell and Developmental Biology, 2020, 8, 365.	3.7	143
17	RIP1 kinase activity is critical for skin inflammation but not for viral propagation. Journal of Leukocyte Biology, 2020, 107, 941-952.	3.3	34
18	Ubiquitin Ligases cIAP1 and cIAP2 Limit Cell Death to Prevent Inflammation. Cell Reports, 2019, 27, 2679-2689.e3.	6.4	44

#	Article	IF	CITATIONS
19	Disruption of XIAP-RIP2 Association Blocks NOD2-Mediated Inflammatory Signaling. Molecular Cell, 2018, 69, 551-565.e7.	9.7	95
20	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
21	Intracellular regulation of TNF activity in health and disease. Cytokine, 2018, 101, 26-32.	3.2	165
22	OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature, 2018, 559, 120-124.	27.8	151
23	XIAP at the crossroads of cell death and inflammation. Oncotarget, 2018, 9, 27319-27320.	1.8	14
24	Diverse ubiquitin linkages regulate RIP kinases-mediated inflammatory and cell death signaling. Cell Death and Differentiation, 2017, 24, 1160-1171.	11.2	106
25	Coordinated ubiquitination and phosphorylation of RIP1 regulates necroptotic cell death. Cell Death and Differentiation, 2017, 24, 26-37.	11.2	95
26	Targeting Cell Death Pathways for Therapeutic Intervention in Kidney Diseases. Seminars in Nephrology, 2016, 36, 153-161.	1.6	19
27	Smac mimetic induces cell death in a large proportion of primary acute myeloid leukemia samples, which correlates with defined molecular markers. Oncotarget, 2016, 7, 49539-49551.	1.8	12
28	Necroptosis: Pathway diversity and characteristics. Seminars in Cell and Developmental Biology, 2015, 39, 56-62.	5.0	91
29	Immunoaffinity Enrichment Coupled to Quantitative Mass Spectrometry Reveals Ubiquitin-Mediated Signaling Events. Journal of Molecular Biology, 2015, 427, 2121-2134.	4.2	14
30	Ubiquitination profiling identifies sensitivity factors for IAP antagonist treatment. Biochemical Journal, 2015, 466, 45-54.	3.7	9
31	Roles of c-IAP Proteins in TNF Receptor Family Activation of NF-κB Signaling. Methods in Molecular Biology, 2015, 1280, 269-282.	0.9	19
32	Activity of Protein Kinase RIPK3 Determines Whether Cells Die by Necroptosis or Apoptosis. Science, 2014, 343, 1357-1360.	12.6	545
33	Ubiquitin in inflammation: the right linkage makes all the difference. Nature Structural and Molecular Biology, 2014, 21, 297-300.	8.2	55
34	Ubiquitination in disease pathogenesis and treatment. Nature Medicine, 2014, 20, 1242-1253.	30.7	845
35	IAP Family of Cell Death and Signaling Regulators. Methods in Enzymology, 2014, 545, 35-65.	1.0	103
36	IAP Proteins and Their Therapeutic Potential. , 2014, , 97-119.		0

#	Article	IF	CITATIONS
37	A Senescence-Inflammatory Switch from Cancer-Inhibitory to Cancer-Promoting Mechanism. Cancer Cell, 2013, 24, 242-256.	16.8	201
38	OTUB1 modulates c-IAP1 stability to regulate signalling pathways. EMBO Journal, 2013, 32, 1103-1114.	7.8	100
39	Antagonists of IAP proteins as cancer therapeutics. Cancer Letters, 2013, 332, 206-214.	7.2	41
40	Inhibitor of Apoptosis Proteins (IAPs) and Their Antagonists Regulate Spontaneous and Tumor Necrosis Factor (TNF)-induced Proinflammatory Cytokine and Chemokine Production. Journal of Biological Chemistry, 2013, 288, 4878-4890.	3.4	38
41	The Role of Ubiquitination in TWEAK-Stimulated Signaling. Frontiers in Immunology, 2013, 4, 472.	4.8	8
42	Protease activity of MALT1: a mystery unravelled. Biochemical Journal, 2012, 444, e3-e5.	3.7	14
43	Characterization of ML-IAP protein stability and physiological role in vivo. Biochemical Journal, 2012, 447, 427-436.	3.7	19
44	The Development of Small-Molecule IAP Antagonists for the Treatment of Cancer. Topics in Medicinal Chemistry, 2012, , 81-103.	0.8	3
45	Discovery of a Potent Small-Molecule Antagonist of Inhibitor of Apoptosis (IAP) Proteins and Clinical Candidate for the Treatment of Cancer (GDC-0152). Journal of Medicinal Chemistry, 2012, 55, 4101-4113.	6.4	217
46	Cellular Inhibitors of Apoptosis Are Global Regulators of NF- \hat{l}^2B and MAPK Activation by Members of the TNF Family of Receptors. Science Signaling, 2012, 5, ra22.	3.6	164
47	Targeting IAP proteins for therapeutic intervention in cancer. Nature Reviews Drug Discovery, 2012, 11, 109-124.	46.4	712
48	Inhibitor of apoptosis proteins: fascinating biology leads to attractive tumor therapeutic targets. Future Oncology, 2011, 7, 633-648.	2.4	48
49	Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nature Reviews Molecular Cell Biology, 2011, 12, 439-452.	37.0	381
50	Improved Quantitative Mass Spectrometry Methods for Characterizing Complex Ubiquitin Signals. Molecular and Cellular Proteomics, 2011, 10, M110.003756.	3.8	124
51	Antagonists Induce a Conformational Change in cIAP1 That Promotes Autoubiquitination. Science, 2011, 334, 376-380.	12.6	196
52	TRAF2 and Cellular IAPs: A Critical Link in TNFR Family Signaling. Advances in Experimental Medicine and Biology, 2011, 691, 63-78.	1.6	7
53	c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO Journal, 2010, 29, 4198-4209.	7.8	311
54	X Chromosome-linked Inhibitor of Apoptosis Regulates Cell Death Induction by Proapoptotic Receptor Agonists. Journal of Biological Chemistry, 2009, 284, 34553-34560.	3.4	51

#	Article	IF	CITATIONS
55	Development of novel drugs targeting inhibitors of apoptosis. Future Oncology, 2009, 5, 141-144.	2.4	7
56	Targeting inhibitor of apoptosis proteins for therapeutic intervention. Future Medicinal Chemistry, 2009, 1, 1509-1525.	2.3	33
57	Antagonism of c-IAP and XIAP Proteins Is Required for Efficient Induction of Cell Death by Small-Molecule IAP Antagonists. ACS Chemical Biology, 2009, 4, 557-566.	3.4	91
58	Masking MALT1: the paracaspase's potential for cancer therapy. Journal of Experimental Medicine, 2009, 206, 2309-2312.	8.5	17
59	Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2. Biochemical Journal, 2009, 417, 149-165.	3.7	106
60	c-IAP1 and c-IAP2 Are Critical Mediators of Tumor Necrosis Factor α (TNFα)-induced NF-κB Activation. Journal of Biological Chemistry, 2008, 283, 24295-24299.	3.4	482
61	Targeting IAP (Inhibitor of Apoptosis) Proteins for Therapeutic Intervention in Tumors. Current Cancer Drug Targets, 2008, 8, 110-117.	1.6	40
62	Microphthalmia-Associated Transcription Factor Is a Critical Transcriptional Regulator of Melanoma Inhibitor of Apoptosis in Melanomas. Cancer Research, 2008, 68, 3124-3132.	0.9	99
63	(Un)expected roles of c-IAPs in apoptotic and NFκB signaling pathways. Cell Cycle, 2008, 7, 1511-1521.	2.6	118
64	The Inhibitor of Apoptosis Proteins as Therapeutic Targets in Cancer. Clinical Cancer Research, 2007, 13, 5995-6000.	7.0	192
65	IAP Antagonists Induce Autoubiquitination of c-IAPs, NF-κB Activation, and TNFα-Dependent Apoptosis. Cell, 2007, 131, 669-681.	28.9	1,124
66	Ubiquitin Ligases in Cancer: Ushers for Degradation. Cancer Investigation, 2007, 25, 502-513.	1.3	21
67	Design, Synthesis, and Biological Activity of a Potent Smac Mimetic That Sensitizes Cancer Cells to Apoptosis by Antagonizing IAPs. ACS Chemical Biology, 2006, 1, 525-533.	3.4	171
68	The Inhibitor of Apoptosis Protein Fusion c-IAP2·MALT1 Stimulates NF-κB Activation Independently of TRAF1 AND TRAF2. Journal of Biological Chemistry, 2006, 281, 29022-29029.	3.4	75
69	Engineering ML-IAP to produce an extraordinarily potent caspase 9 inhibitor: implications for Smac-dependent anti-apoptotic activity of ML-IAP. Biochemical Journal, 2005, 385, 11-20.	3.7	130
70	Structure and Function Analysis of Peptide Antagonists of Melanoma Inhibitor of Apoptosis (ML-IAP). Biochemistry, 2003, 42, 8223-8231.	2.5	92
71	SMAC Negatively Regulates the Anti-apoptotic Activity of Melanoma Inhibitor of Apoptosis (ML-IAP). Journal of Biological Chemistry, 2002, 277, 12275-12279.	3.4	150
72	ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Current Biology, 2000, 10, 1359-1366.	3.9	389

#	Article	IF	CITATIONS
73	Baculovirus-based Genetic Screen for Antiapoptotic Genes Identifies a Novel IAP. Journal of Biological Chemistry, 1999, 274, 36769-36773.	3.4	31
74	Inhibitor of Apoptosis Proteins Physically Interact with and Block Apoptosis Induced by <i>Drosophila</i> Proteins HID and GRIM. Molecular and Cellular Biology, 1998, 18, 3300-3309.	2.3	208