Karine De Oliveira Vigier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8910994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 2012, 41, 7108.	38.1	3,591
2	Contribution of Deep Eutectic Solvents for Biomass Processing: Opportunities, Challenges, and Limitations. ChemCatChem, 2015, 7, 1250-1260.	3.7	180
3	Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBAâ€15 Catalyst. ChemSusChem, 2015, 8, 1885-1891.	6.8	161
4	Conversion of fructose and inulin to 5-hydroxymethylfurfural in sustainable betaine hydrochloride-based media. Green Chemistry, 2012, 14, 285-289.	9.0	114
5	Green and Inexpensive Cholineâ€Derived Solvents for Cellulose Decrystallization. Chemistry - A European Journal, 2012, 18, 1043-1046.	3.3	110
6	Combination of Pd/C and Amberlyst-15 in a single reactor for the acid/hydrogenating catalytic conversion of carbohydrates to 5-hydroxy-2,5-hexanedione. Green Chemistry, 2014, 16, 4110-4114.	9.0	98
7	Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chemistry, 2013, 15, 963.	9.0	88
8	Depolymerization of Cellulose Assisted by a Nonthermal Atmospheric Plasma. Angewandte Chemie - International Edition, 2011, 50, 8964-8967.	13.8	85
9	Palladium/Carbon Dioxide Cooperative Catalysis for the Production of Diketone Derivatives from Carbohydrates. ChemSusChem, 2014, 7, 2089-2093.	6.8	81
10	Dehydration of Highly Concentrated Solutions of Fructose to 5â€Hydroxymethylfurfural in a Cheap and Sustainable Choline Chloride/Carbon Dioxide System. ChemSusChem, 2012, 5, 1223-1226.	6.8	78
11	Synergistic Effect of High-Frequency Ultrasound with Cupric Oxide Catalyst Resulting in a Selectivity Switch in Glucose Oxidation under Argon. Journal of the American Chemical Society, 2019, 141, 14772-14779.	13.7	77
12	Synthesis of Renewable <i>meta</i> â€Xylylenediamine from Biomassâ€Derived Furfural. Angewandte Chemie - International Edition, 2018, 57, 10510-10514.	13.8	76
13	Selectivity enhancement in the aqueous acid-catalyzed conversion of glucose to 5-hydroxymethylfurfural induced by choline chloride. Green Chemistry, 2013, 15, 3205.	9.0	74
14	Synthesis of maleic and fumaric acids from furfural in the presence of betaine hydrochloride and hydrogen peroxide. Green Chemistry, 2017, 19, 98-101.	9.0	73
15	Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste. Bioresource Technology, 2017, 245, 456-462.	9.6	71
16	Activation of Microcrystalline Cellulose in a CO ₂ â€Based Switchable System. ChemSusChem, 2013, 6, 593-596.	6.8	67
17	Acid atalyzed Dehydration of Fructose and Inulin with Glycerol or Glycerol Carbonate as Renewably Sourced Coâ€ S olvent. ChemSusChem, 2010, 3, 1304-1309.	6.8	66
18	Sonochemistry: What Potential for Conversion of Lignocellulosic Biomass into Platform Chemicals?. ChemSusChem, 2014, 7, 2774-2787.	6.8	64

#	Article	IF	CITATIONS
19	Catalytic dehydration of fructose to HMF over sulfonic acid functionalized periodic mesoporous organosilicas: role of the acid density. Catalysis Science and Technology, 2014, 4, 2235-2240.	4.1	62
20	Combination of ball-milling and non-thermal atmospheric plasma as physical treatments for the saccharification of microcrystalline cellulose. Green Chemistry, 2012, 14, 2212.	9.0	59
21	Depolymerization of cellulose to processable glucans by non-thermal technologies. Green Chemistry, 2016, 18, 3903-3913.	9.0	59
22	A choline chloride/DMSO solvent for the direct synthesis of diformylfuran from carbohydrates in the presence of heteropolyacids. Green Chemistry, 2015, 17, 4459-4464.	9.0	57
23	Catalytic etherification of glycerol with short chain alkyl alcohols in the presence of Lewis acids. Green Chemistry, 2013, 15, 901.	9.0	56
24	Acidâ€Assisted Ball Milling of Cellulose as an Efficient Pretreatment Process for the Production of Butyl Glycosides. ChemSusChem, 2015, 8, 3263-3269.	6.8	55
25	Transition of cellulose crystalline structure in biodegradable mixtures of renewably-sourced levulinate alkyl ammonium ionic liquids, γ-valerolactone and water. Green Chemistry, 2014, 16, 2463-2471.	9.0	52
26	Hydroconversion of 5â€Hydroxymethylfurfural to 2,5â€Dimethylfuran and 2,5â€Dimethyltetrahydrofuran over Nonâ€promoted Ni/SBAâ€15. ChemCatChem, 2020, 12, 2050-2059.	3.7	41
27	High Catalytic Performance of Aquivion PFSA, a Reusable Solid Perfluorosulfonic Acid Polymer, in the Biphasic Glycosylation of Glucose with Fatty Alcohols. ACS Catalysis, 2017, 7, 2990-2997.	11.2	37
28	Heterogeneously-Catalyzed Conversion of Carbohydrates. Topics in Current Chemistry, 2010, 295, 63-92.	4.0	36
29	Conversion of Cellulose into Amphiphilic Alkyl Glycosides Catalyzed by Aquivion, a Perfluorosulfonic Acid Polymer. ChemSusChem, 2017, 10, 3604-3610.	6.8	32
30	Sustainable route to methyl-9-hydroxononanoate (polymer precursor) by oxidative cleavage of fatty acid methyl ester from rapeseed oil. Green Chemistry, 2014, 16, 96-101.	9.0	31
31	Catalytic Dehydration of Carbohydrates Suspended in Organic Solvents Promoted by AlCl ₃ /SiO ₂ Coated with Choline Chloride. ChemSusChem, 2015, 8, 269-274.	6.8	31
32	Selective Synthesis of THF-Derived Amines from Biomass-Derived Carbonyl Compounds. ACS Catalysis, 2019, 9, 8893-8902.	11.2	30
33	Organic Acid-Regulated Lewis Acidity for Selective Catalytic Hydroxymethylfurfural Production from Rice Waste: An Experimental–Computational Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 1437-1446.	6.7	28
34	Synthesis of Renewable meta â€Xylylenediamine from Biomassâ€Derived Furfural. Angewandte Chemie, 2018, 130, 10670-10674.	2.0	27
35	Amphiphilic dipyridinium-phosphotungstate as an efficient and recyclable catalyst for triphasic fatty ester epoxidation and oxidative cleavage with hydrogen peroxide. Green Chemistry, 2017, 19, 2855-2862.	9.0	26
36	Hydrogenation of Sugars to Sugar Alcohols in the Presence of a Recyclable Ru/Al ₂ O ₃ Catalyst Commercially Available. ACS Sustainable Chemistry and Engineering, 2021, 9, 9240-9247.	6.7	26

KARINE DE OLIVEIRA VIGIER

#	Article	IF	CITATIONS
37	Synthesis of Furfuryl Alcohol from Furfural: A Comparison between Batch and Continuous Flow Reactors. Energies, 2020, 13, 1002.	3.1	25
38	Direct Catalytic Conversion of Furfural to Furanâ€derived Amines in the Presence of Ruâ€based Catalyst. ChemSusChem, 2020, 13, 1699-1704.	6.8	25
39	Unveiling the role of choline chloride in furfural synthesis from highly concentrated feeds of xylose. Green Chemistry, 2018, 20, 5104-5110.	9.0	24
40	Homogeneously-acid catalyzed oligomerization of glycerol. Green Chemistry, 2015, 17, 4307-4314.	9.0	23
41	Selective Hydrogenation of Xylose to Xylitol over Co/SiO ₂ Catalysts. ChemCatChem, 2020, 12, 1973-1978.	3.7	23
42	A Combined Experimental–Theoretical Study on Dielsâ€Alder Reaction with Bioâ€Based Furfural: Towards Renewable Aromatics. ChemSusChem, 2021, 14, 313-323.	6.8	23
43	Heterogeneously-acid catalyzed oligomerization of glycerol over recyclable superacid Aquivion ® PFSA. Journal of Molecular Catalysis A, 2016, 422, 84-88.	4.8	22
44	Selective Conversion of Concentrated Feeds of Furfuryl Alcohol to Alkyl Levulinates Catalyzed by Metal Triflates. ACS Sustainable Chemistry and Engineering, 2018, 6, 4405-4411.	6.7	21
45	Conversion of wheat straw to furfural and levulinic acid in a concentrated aqueous solution of betaÃ ⁻ ne hydrochloride. RSC Advances, 2014, 4, 28836.	3.6	20
46	Mechanocatalytic Depolymerization of Cellulose With Perfluorinated Sulfonic Acid Ionomers. Frontiers in Chemistry, 2018, 6, 74.	3.6	19
47	One-pot synthesis of isosorbide from cellulose or lignocellulosic biomass: a challenge?. Beilstein Journal of Organic Chemistry, 2020, 16, 1713-1721.	2.2	19
48	Catalytic Conversion of Carbohydrates to Furanic Derivatives in the Presence of Choline Chloride. Catalysts, 2017, 7, 218.	3.5	18
49	Insights on the unique electro-catalytic behavior of PtBi/C materials. Electrochimica Acta, 2020, 329, 135161.	5.2	18
50	Fast and solvent free polymerization of carbohydrates induced by non-thermal atmospheric plasma. Green Chemistry, 2016, 18, 3013-3019.	9.0	16
51	Catalytic glycosylation of glucose with alkyl alcohols over sulfonated mesoporous carbons. Molecular Catalysis, 2019, 468, 125-129.	2.0	16
52	Selective radical depolymerization of cellulose to glucose induced by high frequency ultrasound. Chemical Science, 2020, 11, 2664-2669.	7.4	16
53	Conversion of furfural to tetrahydrofuran-derived secondary amines under mild conditions. Green Chemistry, 2020, 22, 1832-1836.	9.0	16
54	High efficiency CoSn/ZnO catalysts for the hydrogenation of methyl oleate. Catalysis Today, 2012, 195, 71-75.	4.4	14

4

KARINE DE OLIVEIRA VIGIER

#	Article	IF	CITATIONS
55	Selective Depolymerization of Cellulose to Low Molecular Weight Cello-Oligomers Catalyzed by BetaÃ⁻ne Hydrochloride. ACS Sustainable Chemistry and Engineering, 2014, 2, 2683-2689.	6.7	12
56	Carbon Dioxide as a Traceless Caramelization Promotor: Preparation of Prebiotic Difructose Dianhydrides (DFAs)-Enriched Caramels from <scp>d</scp> -Fructose. Journal of Agricultural and Food Chemistry, 2017, 65, 6093-6099.	5.2	12
57	Elucidation of the role of betaine hydrochloride in glycerol esterification: towards bio-based ionic building blocks. Green Chemistry, 2017, 19, 5647-5652.	9.0	12
58	Catalystâ€Free Synthesis of Alkylpolyglycosides Induced by Highâ€Frequency Ultrasound. ChemSusChem, 2018, 11, 2673-2676.	6.8	12
59	High efficiency of superacid HF–SbF5 for the selective decrystallization–depolymerization of cellulose to glucose. Organic and Biomolecular Chemistry, 2012, 10, 2521.	2.8	10
60	Cis–trans isomerization of methyl cis-9-octadecenoate in the presence of cobalt tin catalysts. Journal of Molecular Catalysis A, 2009, 306, 102-106.	4.8	9
61	10 Catalytic conversion of biosourced raw materials: homogeneous catalysis. , 2012, , 231-262.		7
62	Catalytic oxidative dehydrogenation of malic acid to oxaloacetic acid. Green Chemistry, 2019, 21, 4604-4608.	9.0	6
63	Impact of shaping Aquivion PFSA on its catalytic performances. Catalysis Science and Technology, 2019, 9, 1231-1237.	4.1	6
64	Selective Acid-Catalyzed Hydroarylation of Nonactivated Alkenes with Aniline Assisted by Hexafluoroisopropanol. Journal of Organic Chemistry, 2021, 86, 17896-17905.	3.2	6
65	Reductive Amination of Aldehyde Ester from Vegetable Oils to Produce Amino Ester in the Presence of Anhydrous Ammonia. ChemistrySelect, 2016, 1, 2004-2008.	1.5	4
66	Synthesis of functionalized tetrahydrofuran derivatives from 2,5-dimethylfuran through cascade reactions. Green Chemistry, 2019, 21, 2601-2609.	9.0	4
67	Selective dihydroxylation of methyl oleate to methyl-9,10-dihydroxystearate in the presence of a recyclable tungsten based catalyst and hydrogen peroxide. New Journal of Chemistry, 2020, 44, 11507-11512.	2.8	4
68	Choline Chloride-Derived ILs for Activation and Conversion of Biomass. Biofuels and Biorefineries, 2014, , 61-87.	0.5	3
69	Assisted catalysis: An overview of alternative activation technologies for the conversion of biomass. , 2022, , 365-393.		3
70	Pivotal role of H ₂ in the isomerisation of isosorbide over a Ru/C catalyst. Catalysis Science and Technology, 2021, 11, 7973-7981.	4.1	2
71	Modeling of Ethylene Glycol Production from Glucose in a Semi ontinuous Reactor. Chemical Engineering and Technology, 2020, 43, 950-963.	1.5	1
72	Oxidative cyclization of linoleic acid in the presence of hydrogen peroxide and phosphotungstic acid. Molecular Catalysis, 2020, 493, 111084.	2.0	1

#	Article	IF	CITATIONS
73	Heterogeneously-catalyzed competitive hydroarylation/hydromination of norbornene with aniline in the presence of Aquivion® ionomer. Molecular Catalysis, 2022, 525, 112368.	2.0	1
74	Innentitelbild: Synthesis of Renewable <i>meta</i> â€Xylylenediamine from Biomassâ€Derived Furfural (Angew. Chem. 33/2018). Angewandte Chemie, 2018, 130, 10538-10538.	2.0	0
75	Catalystâ€Free Synthesis of Alkylpolyglycosides Induced by Highâ€Frequency Ultrasound. ChemSusChem, 2018, 11, 2642-2642.	6.8	Ο
76	Sustainable Biofuels and Chemicals Production Using Ionic Liquids. , 2018, , 287-331.		0