Juan L Acero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8909845/publications.pdf

Version: 2024-02-01

		44069	7	76900
103	5,893	48		74
papers	citations	h-index		g-index
103	103	103		5125
103	103	103		3123
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Membrane filtration, activated sludge and solar photocatalytic technologies for the effective treatment of table olive processing wastewater. Journal of Environmental Chemical Engineering, 2021, 9, 105743.	6.7	10
2	Degradation of neonicotinoids by UV irradiation: Kinetics and effect of real water constituents. Separation and Purification Technology, 2019, 211, 218-226.	7.9	59
3	Degradation of selected emerging contaminants by UV-activated persulfate: Kinetics and influence of matrix constituents. Separation and Purification Technology, 2018, 201, 41-50.	7.9	63
4	Adsorption of selected emerging contaminants onto PAC and GAC: Equilibrium isotherms, kinetics, and effect of the water matrix. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 727-734.	1.7	16
5	Removal of emerging contaminants from secondary effluents by micellar-enhanced ultrafiltration. Separation and Purification Technology, 2017, 181, 123-131.	7.9	57
6	Assessment of the UV/Cl ₂ advanced oxidation process for the degradation of the emerging contaminants amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol in water systems. Environmental Technology (United Kingdom), 2017, 38, 2508-2516.	2.2	12
7	Oxidation of the emerging contaminants amitriptyline hydrochloride, methyl salicylate and 2â€phenoxyethanol by persulfate activated by <scp>UV</scp> irradiation. Journal of Chemical Technology and Biotechnology, 2016, 91, 1004-1011.	3.2	16
8	Investigating PPCP Removal from Wastewater by Powdered Activated Carbon/Ultrafiltration. Water, Air, and Soil Pollution, 2016 , 227 , 1 .	2.4	59
9	Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes. Chemical Engineering Journal, 2016, 289, 48-58.	12.7	89
10	Influence of membrane, pH and water matrix properties on the retention of emerging contaminants by ultrafiltration and nanofiltration. Desalination and Water Treatment, 2016, 57, 11685-11698.	1.0	3
11	Comparison between chlorination and ozonation treatments for the elimination of the emerging contaminants amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol in surface waters and secondary effluents. Journal of Chemical Technology and Biotechnology, 2015, 90, 1400-1407.	3.2	9
12	Elimination of Selected Emerging Contaminants by the Combination of Membrane Filtration and Chemical Oxidation Processes. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	42
13	Ozonation of benzotriazole and methylindole: Kinetic modeling, identification of intermediates and reaction mechanisms. Journal of Hazardous Materials, 2015, 282, 224-232.	12.4	34
14	Determination of the Reaction Rate Constants and Decomposition Mechanisms of Ozone with Two Model Emerging Contaminants: DEET and Nortriptyline. Industrial & Engineering Chemistry Research, 2013, 52, 17064-17073.	3.7	24
15	Photolysis of model emerging contaminants in ultra-pure water: Kinetics, by-products formation and degradation pathways. Water Research, 2013, 47, 870-880.	11.3	75
16	Oxidation of chlorophene by ozonation: Kinetics, identification of by-products and reaction pathways. Chemical Engineering Journal, 2013, 230, 447-455.	12.7	18
17	Chlorination and bromination kinetics of emerging contaminants in aqueous systems. Chemical Engineering Journal, 2013, 219, 43-50.	12.7	57
18	The Effectiveness of Single Oxidants and AOPs in the Degradation of Emerging Contaminants in Waters: A Comparison Study. Ozone: Science and Engineering, 2013, 35, 263-272.	2.5	13

#	Article	IF	CITATIONS
19	Modeling the photodegradation of emerging contaminants in waters by UV radiation and UV/H2O2system. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 120-128.	1.7	15
20	Combined chemical oxidation and membrane filtration techniques applied to the removal of some selected pharmaceuticals from water systems. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 522-533.	1.7	29
21	Coupling of adsorption, coagulation, and ultrafiltration processes for the removal of emerging contaminants in a secondary effluent. Chemical Engineering Journal, 2012, 210, 1-8.	12.7	104
22	Elimination of the Emerging Contaminants Amitriptyline Hydrochloride, Methyl Salicylate, and 2-Phenoxyethanol in Ultrapure Water and Secondary Effluents by Photolytic and Radicalary Pathways. Industrial & Description (Secondary Research, 2012, 51, 16209-16215).	3.7	17
23	Non-catalytic and catalytic wet air oxidation of pharmaceuticals in ultra-pure and natural waters. Chemical Engineering Research and Design, 2011, 89, 334-341.	5.6	31
24	Bromination of selected pharmaceuticals in water matrices. Chemosphere, 2011, 85, 1430-1437.	8.2	24
25	Comparison of different chemical oxidation treatments for the removal of selected pharmaceuticals in water matrices. Chemical Engineering Journal, 2011, 168, 1149-1156.	12.7	133
26	Ultrafiltration and nanofiltration membranes applied to the removal of the pharmaceuticals amoxicillin, naproxen, metoprolol and phenacetin from water. Journal of Chemical Technology and Biotechnology, 2011, 86, 858-866.	3.2	56
27	Membrane filtration technologies applied to municipal secondary effluents for potential reuse. Journal of Hazardous Materials, 2010, 177, 390-398.	12.4	106
28	Oxidation of hydrochlorothiazide by UV radiation, hydroxyl radicals and ozone: Kinetics and elimination from water systems. Chemical Engineering Journal, 2010, 160, 72-78.	12.7	36
29	Retention of emerging micropollutants from UP water and a municipal secondary effluent by ultrafiltration and nanofiltration. Chemical Engineering Journal, 2010, 163, 264-272.	12.7	112
30	Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices. Water Research, 2010, 44, 4158-4170.	11.3	128
31	Removal of selected pharmaceuticals in waters by photochemical processes. Journal of Chemical Technology and Biotechnology, 2009, 84, 1186-1195.	3.2	45
32	Combination of chemical oxidationâ€membrane filtration processes for the elimination of phenylâ€ureas in water matrices. Journal of Chemical Technology and Biotechnology, 2009, 84, 1883-1893.	3.2	10
33	Removal of phenyl-urea herbicides in natural waters by UF membranes: Permeate flux, analysis of resistances and rejection coefficients. Separation and Purification Technology, 2009, 65, 322-330.	7.9	26
34	The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater. Journal of Hazardous Materials, 2009, 162, 1438-1445.	12.4	67
35	Nanofiltration processes applied to the removal of phenyl-ureas in natural waters. Journal of Hazardous Materials, 2009, 165, 714-723.	12.4	12
36	Kinetics of the Chemical Oxidation of the Pharmaceuticals Primidone, Ketoprofen, and Diatrizoate in Ultrapure and Natural Waters. Industrial & Engineering Chemistry Research, 2009, 48, 3380-3388.	3.7	119

#	Article	IF	Citations
37	Ozonation of pharmaceutical compounds: Rate constants and elimination in various water matrices. Chemosphere, 2009, 77, 53-59.	8.2	102
38	Removal of phenyl-urea herbicides in ultrapure water by ultrafiltration and nanofiltration processes. Water Research, 2009, 43, 267-276.	11.3	48
39	Elimination of organic matter present in wastewaters from the cork industry by membrane filtration. Journal of Chemical Technology and Biotechnology, 2008, 83, 309-316.	3.2	10
40	Ozone and membrane filtration based strategies for the treatment of cork processing wastewaters. Journal of Hazardous Materials, 2008, 152, 373-380.	12.4	32
41	Chlorination of organophosphorus pesticides in natural waters. Journal of Hazardous Materials, 2008, 153, 320-328.	12.4	55
42	Treatment of wastewaters from the cork process industry by using ultrafiltration membranes. Desalination, 2008, 229, 156-169.	8.2	18
43	Oxidation of MC-LR and -RR with chlorine and potassium permanganate: Toxicity of the reaction products. Water Research, 2008, 42, 1744-1752.	11.3	77
44	Oxidation of chlorfenvinphos in ultrapure and natural waters by ozonation and photochemical processes. Water Research, 2008, 42, 3198-3206.	11.3	34
45	Oxidation of microcystin-LR with chlorine and permanganate during drinking water treatment. Journal of Water Supply: Research and Technology - AQUA, 2008, 57, 371-380.	1.4	26
46	Oxidation of microcystins by permanganate: Reaction kinetics and implications for water treatment. Water Research, 2007, 41, 102-110.	11.3	164
47	Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate. Water Research, 2007, 41, 2048-2056.	11.3	95
48	Oxidative elimination of cyanotoxins: Comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Research, 2007, 41, 3381-3393.	11.3	222
49	Kinetics of the transformation of phenyl-urea herbicides during ozonation of natural waters: Rate constants and model predictions. Water Research, 2007, 41, 4073-4084.	11.3	74
50	Kinetics of phenylurea herbicides oxidation by Fenton and photo-Fenton processes. Journal of Chemical Technology and Biotechnology, 2007, 82, 65-73.	3.2	42
51	Kinetics of reactions between chlorine or bromine and the herbicides diuron and isoproturon. Journal of Chemical Technology and Biotechnology, 2007, 82, 214-222.	3.2	27
52	Removal of diazinon by various advanced oxidation processes. Journal of Chemical Technology and Biotechnology, 2007, 82, 566-574.	3.2	37
53	Application of microfiltration and ultrafiltration processes to cork processing wastewaters and assessment of the membrane fouling. Separation and Purification Technology, 2006, 50, 354-364.	7.9	61
54	Photochemical oxidation processes for the elimination of phenyl-urea herbicides in waters. Journal of Hazardous Materials, 2006, 138, 278-287.	12.4	93

#	Article	IF	CITATIONS
55	Gallic acid degradation in aqueous solutions by UV/H2O2 treatment, Fenton's reagent and the photo-Fenton system. Journal of Hazardous Materials, 2005, 126, 31-39.	12.4	75
56	Purification of Ellagic Acid by UF Membranes. Chemical Engineering and Technology, 2005, 28, 1035-1040.	1.5	11
57	Oxidation of Esculetin, a Model Pollutant Present in Cork Processing Wastewaters, by Chemical Methods. Ozone: Science and Engineering, 2005, 27, 317-326.	2.5	5
58	Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins. Water Research, 2005, 39, 1628-1638.	11.3	144
59	Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: Assessment of taste and odor development. Water Research, 2005, 39, 2979-2993.	11.3	170
60	Removal of Phenolic Compounds in Water by Ultrafiltration Membrane Treatments. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 1585-1603.	1.7	26
61	Oxidation of Acetovanillone by Photochemical Processes and Hydroxyl Radicals. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 2153-2169.	1.7	12
62	Chemical treatment of cork-processing wastewaters for potential reuse. Journal of Chemical Technology and Biotechnology, 2004, 79, 1065-1072.	3.2	22
63	Modeling of photooxidation of acetamide herbicides in natural waters by UV radiation and the combinations UV/H2O2 and UV/O3. Journal of Chemical Technology and Biotechnology, 2004, 79, 987-997.	3.2	21
64	Oxidation of MCPA and 2,4-dby UV Radiation, Ozone, and the Combinations UV/H2O2and O3/H2O2. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2004, 39, 393-409.	1.5	49
65	Purification of storage brines from the preservation of table olives. Journal of Hazardous Materials, 2003, 96, 155-169.	12.4	14
66	Kinetics of the ozonation and aerobic biodegradation of wine vinasses in discontinuous and continuous processes. Journal of Hazardous Materials, 2003, 101, 203-218.	12.4	60
67	Oxidation of Acetamide Herbicides in Natural Waters by Ozone and by the Combination of Ozone/Hydrogen Peroxide:Â Kinetic Study and Process Modeling. Industrial & Discreting Chemistry Research, 2003, 42, 5762-5769.	3.7	26
68	Kinetics of photodegradation and ozonation of pentachlorophenol. Chemosphere, 2003, 51, 651-662.	8.2	66
69	Purification of cork processing wastewaters by ozone, by activated sludge, and by their two sequential applications. Water Research, 2003, 37, 4081-4090.	11.3	45
70	THE USE OF OZONE, OZONE PLUS UV RADIATION, AND AEROBIC MICROORGANISMS IN THE PURIFICATION OF SOME AGRO-INDUSTRIAL WASTEWATERS. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2002, 37, 1307-1325.	1.7	19
71	Kinetics of Fenuron Decomposition by Single-Chemical Oxidants and Combined Systems. Industrial & Lamp; Engineering Chemistry Research, 2002, 41, 4225-4232.	3.7	21
72	Application of Ozone and Advanced Oxidation Processes to the Treatment of Lye-Wastewaters from the Table Olives Industry. Ozone: Science and Engineering, 2002, 24, 105-116.	2.5	14

#	Article	IF	CITATIONS
73	Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes. Journal of Hazardous Materials, 2002, 89, 51-65.	12.4	149
74	The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Water Research, 2001, 35, 1338-1343.	11.3	125
75	MTBE Oxidation by Conventional Ozonation and the Combination Ozone/Hydrogen Peroxide:Â Efficiency of the Processes and Bromate Formation. Environmental Science & Environmental Science & 2001, 35, 4252-4259.	10.0	153
76	Ozonation and Biodegradation Processes in Batch Reactors Treating Black Table Olives Washing Wastewaters. Industrial & Engineering Chemistry Research, 2001, 40, 3144-3151.	3.7	40
77	Characterization of Oxidation processes: ozonation and the AOP O ₃ /H ₂ O ₂ . Journal - American Water Works Association, 2001, 93, 90-100.	0.3	133
78	Organic matter removal from wastewaters of the black olive industry by chemical and biological procedures. Process Biochemistry, 2001, 37, 257-265.	3.7	64
79	Oxidation of several chlorophenolic derivatives by UV irradiation and hydroxyl radicals. Journal of Chemical Technology and Biotechnology, 2001, 76, 312-320.	3.2	69
80	DNA degradation by the mixture of copper and catechol is caused by DNA-copper-hydroperoxo complexes, probably DNA-Cu(I)OOH. Environmental and Molecular Mutagenesis, 2000, 36, 5-12.	2.2	66
81	Rate constants for the reactions of ozone with chlorophenols in aqueous solutions. Journal of Hazardous Materials, 2000, 79, 271-285.	12.4	75
82	Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes. Chemosphere, 2000, 41, 1271-1277.	8.2	167
83	Degradation Kinetics of Atrazine and Its Degradation Products with Ozone and OH Radicals:  A Predictive Tool for Drinking Water Treatment. Environmental Science & Technology, 2000, 34, 591-597.	10.0	350
84	Influence of Carbonate on the Ozone/Hydrogen Peroxide Based Advanced Oxidation Process for Drinking Water Treatment. Ozone: Science and Engineering, 2000, 22, 305-328.	2.5	124
85	Purification kinetics of winery wastes by ozonation, anaerobic digestion and ozonation plus anaerobic digestion. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 1999, 34, 2023-2041.	1.7	8
86	Enhancement of the ozonation of wine distillery wastewaters by an aerobic pretreatment. Bioprocess and Biosystems Engineering, 1999, 21, 459.	0.5	28
87	Treatment of olive mill wastewaters by ozonation, aerobic degradation and the combination of both treatments. Journal of Chemical Technology and Biotechnology, 1999, 74, 639-646.	3.2	70
88	Chemical Decomposition of 2,4,6-Trichlorophenol by Ozone, Fenton's Reagent, and UV Radiation. Industrial & Engineering Chemistry Research, 1999, 38, 1341-1349.	3.7	85
89	Treatments of wastewaters from olive oil mills by uv radiation and by combined ozoneâ€UV radiation. Toxicological and Environmental Chemistry, 1997, 61, 173-185.	1.2	19
90	Chemical pretreatment by ozone of wastewaters from olive oil mills. Toxicological and Environmental Chemistry, 1997, 60, 97-109.	1.2	12

#	Article	IF	Citations
91	Ozonation Kinetics of Phenolic Acids Present in Wastewaters from Olive Oil Mills. Industrial & Engineering Chemistry Research, 1997, 36, 638-644.	3.7	53
92	Improvement of the anaerobic biodegradation of olive mill wastewaters by prior ozonation pretreatment. Bioprocess and Biosystems Engineering, 1997, 17, 169.	0.5	57
93	Aerobic degradation of olive mill wastewaters. Applied Microbiology and Biotechnology, 1997, 47, 185-188.	3.6	92
94	Simultaneous photodegradation and ozonation plus UV radiation of phenolic acidsâ€"major pollutants in agro-industrial wastewaters. Journal of Chemical Technology and Biotechnology, 1997, 70, 253-260.	3.2	56
95	Degradation of protocatechuic acid by two advanced oxidation processes: Ozone/UV radiation and H2O2UV radiation. Water Research, 1996, 30, 1597-1604.	11.3	70
96	Kinetics of the bentazone herbicide ozonation. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1996, 31, 519-537.	0.1	2
97	Oxidation of Vanillic acid as a model of polyphenolic compounds in olive oil wastewaters. III. Combined UV radiationâ€hydrogen peroxide oxidation. Toxicological and Environmental Chemistry, 1996, 56, 199-210.	1.2	13
98	Photolytic Decomposition of Bentazone. Journal of Chemical Technology and Biotechnology, 1996, 66, 206-212.	3.2	10
99	Advanced Oxidation Processes In The Degradation Of Cyanazine. Ozone: Science and Engineering, 1995, 17, 237-258.	2.5	14
100	Oxidation of Vanillic acid as a model of polyphenolic compound present in olive oil wastewaters. II. Photochemical oxidation and combined ozoneâ€UV oxidation. Toxicological and Environmental Chemistry, 1995, 47, 141-153.	1.2	10
101	Oxidation of Vanillic acid as a model of Polyphenolic compound present in olive oil wastewaters. I. Ozonation process. Toxicological and Environmental Chemistry, 1994, 46, 37-47.	1.2	13
102	Photochemical oxidation of protocatechuic acid. Water Research, 1994, 28, 2095-2100.	11.3	14
103	Protocatechuic acid ozonation in aqueous solutions. Water Research, 1993, 27, 1519-1525.	11.3	9