Nicolas Grandjean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8909606/publications.pdf

Version: 2024-02-01

559 papers 17,787 citations

65 h-index 27402 106 g-index

566 all docs

566 docs citations

566 times ranked 8667 citing authors

#	Article	IF	CITATIONS
1	Room-Temperature Polariton Lasing in Semiconductor Microcavities. Physical Review Letters, 2007, 98, 126405.	7.8	833
2	Temperature quenching of photoluminescence intensities in undoped and doped GaN. Journal of Applied Physics, 1999, 86, 3721-3728.	2.5	458
3	Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells. Physical Review B, 1998, 58, R13371-R13374.	3.2	400
4	Current status of AllnN layers lattice-matched to GaN for photonics and electronics. Journal Physics D: Applied Physics, 2007, 40, 6328-6344.	2.8	304
5	High electron mobility lattice-matched AllnNâ^•GaN field-effect transistor heterostructures. Applied Physics Letters, 2006, 89, 062106.	3.3	291
6	From visible to white light emission by GaN quantum dots on Si(111) substrate. Applied Physics Letters, 1999, 75, 962-964.	3.3	276
7	Room temperature polariton lasing in a GaNâ^•AlGaN multiple quantum well microcavity. Applied Physics Letters, 2008, 93, .	3.3	267
8	Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells. Journal of Applied Physics, 1999, 86, 3714-3720.	2.5	248
9	High internal electric field in a graded-width InGaN/GaN quantum well: Accurate determination by time-resolved photoluminescence spectroscopy. Applied Physics Letters, 2001, 78, 1252-1254.	3.3	208
10	Spontaneous Polarization Buildup in a Room-Temperature Polariton Laser. Physical Review Letters, 2008, 101, 136409.	7.8	197
11	Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers. Applied Physics Letters, 1996, 69, 2071-2073.	3.3	183
12	Barrier-width dependence of group-III nitrides quantum-well transition energies. Physical Review B, 1999, 60, 1496-1499.	3.2	181
13	Two-dimensional electron gas density in Al1â^'xInxN/AlN/GaN heterostructures (0.03â%xâ%0.23). Journal of Applied Physics, 2008, 103, .	2.5	154
14	Epitaxial growth of highly strained InxGa1â^'xAs on GaAs(001): the role of surface diffusion length. Journal of Crystal Growth, 1993, 134, 51-62.	1.5	148
15	Molecular Beam Epitaxy of Group-III Nitrides on Silicon Substrates: Growth, Properties and Device Applications. Physica Status Solidi A, 2001, 188, 501-510.	1.7	142
16	Time-resolved photoluminescence as a probe of internal electric fields in GaN-(GaAl)N quantum wells. Physical Review B, 1999, 59, 15363-15367.	3.2	140
17	Progresses in III-nitride distributed Bragg reflectors and microcavities using AllnN/GaN materials. Physica Status Solidi (B): Basic Research, 2005, 242, 2326-2344.	1.5	140
18	Blue monolithic AllnN-based vertical cavity surface emitting laser diode on free-standing GaN substrate. Applied Physics Letters, 2012, 101, .	3.3	138

#	Article	IF	Citations
19	Delayed relaxation by surfactant action in highly strained III-V semiconductor epitaxial layers. Physical Review Letters, 1992, 69, 796-799.	7.8	137
20	Composition of Wide Bandgap Semiconductor Materials and Nanostructures Measured by Atom Probe Tomography and Its Dependence on the Surface Electric Field. Journal of Physical Chemistry C, 2014, 118, 24136-24151.	3.1	135
21	Oscillation of the lattice relaxation in layer-by-layer epitaxial growth of highly strained materials. Physical Review Letters, 1993, 71, 1411-1414.	7.8	132
22	205-GHz (Al,In)N/GaN HEMTs. IEEE Electron Device Letters, 2010, 31, 957-959.	3.9	132
23	High-electron-mobility AlGaN/GaN heterostructures grown on Si(111) by molecular-beam epitaxy. Applied Physics Letters, 2001, 78, 335-337.	3.3	125
24	Monolithic White Light Emitting Diodes Based on InGaN/GaN Multiple-Quantum Wells. Japanese Journal of Applied Physics, 2001, 40, L918-L920.	1.5	120
25	Efficiency of NH3 as nitrogen source for GaN molecular beam epitaxy. Applied Physics Letters, 1998, 72, 350-352.	3.3	119
26	High electron mobility in AlGaN/GaN heterostructures grown on bulk GaN substrates. Applied Physics Letters, 2000, 77, 2551-2553.	3.3	119
27	Room-temperature blue-green emission from InGaN/GaN quantum dots made by strain-induced islanding growth. Applied Physics Letters, 1999, 75, 3751-3753.	3.3	115
28	Testing the Temperature Limits of GaN-Based HEMT Devices. IEEE Transactions on Device and Materials Reliability, 2010, 10, 427-436.	2.0	115
29	Can InAlN/GaN be an alternative to high power / high temperature AlGaN/GaN devices?. , 2006, , .		110
30	Radiative lifetime of a single electron-hole pair inGaNâ^•AlNquantum dots. Physical Review B, 2006, 73, .	3.2	106
31	GaN and AlxGa1â^'xN molecular beam epitaxy monitored by reflection high-energy electron diffraction. Applied Physics Letters, 1997, 71, 1816-1818.	3.3	104
32	Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 50, 97-104.	3 . 5	104
33	Barrier-Layer Scaling of InAlN/GaN HEMTs. IEEE Electron Device Letters, 2008, 29, 422-425.	3.9	104
34	GaN evaporation in molecular-beam epitaxy environment. Applied Physics Letters, 1999, 74, 1854-1856.	3.3	103
35	Crack-free fully epitaxial nitride microcavity using highly reflective AlInNâ [•] GaN Bragg mirrors. Applied Physics Letters, 2005, 86, 031107.	3.3	102
36	Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency. Applied Physics Letters, 2017, 111, .	3.3	99

#	Article	IF	Citations
37	Surfactant effect on the surface diffusion length in epitaxial growth. Physical Review B, 1993, 48, 8502-8505.	3.2	97
38	Polariton lasing in a hybrid bulk ZnO microcavity. Applied Physics Letters, 2011, 99, .	3.3	97
39	Analysis of degradation mechanisms in lattice-matched InAlN/GaN high-electron-mobility transistors. Journal of Applied Physics, 2009, 106, .	2.5	96
40	GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells. Applied Physics Letters, 2018, 113, .	3.3	93
41	Recent Progress in the Growth of Highly Reflective Nitride-Based Distributed Bragg Reflectors and Their Use in Microcavities. Japanese Journal of Applied Physics, 2005, 44, 7207-7216.	1.5	88
42	Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory. Physical Review B, 2010, 81, .	3.2	88
43	Technology and Performance of InAlN/AlN/GaN HEMTs With Gate Insulation and Current Collapse Suppression Using Zr $$hbox{O}_{m 2}$ or Hf $hbox{O}_{m 2}$. IEEE Transactions on Electron Devices, 2008, 55, 937-941.$	3.0	86
44	Molecular-beam epitaxy of gallium nitride on (0001) sapphire substrates using ammonia. Journal of Applied Physics, 1998, 83, 1379-1383.	2.5	84
45	Self-limitation of AlGaN/GaN quantum well energy by built-in polarization field. Applied Physics Letters, 1999, 74, 2361-2363.	3.3	82
46	InAlN/GaN HEMTs for Operation in the 1000 \$^{circ} hbox{C}\$ Regime: A First Experiment. IEEE Electron Device Letters, 2012, 33, 985-987.	3.9	82
47	Midinfrared intersubband absorption in lattice-matched AllnNâ-GaN multiple quantum wells. Applied Physics Letters, 2005, 87, 111106.	3.3	81
48	InGaN based micro light emitting diodes featuring a buried GaN tunnel junction. Applied Physics Letters, 2015, 107, .	3.3	81
49	Surfactant mediated epitaxial growth of InxGa1â^'xAs on GaAs (001). Applied Physics Letters, 1992, 61, 99-101.	3.3	80
50	Real time control of InxGa1â^'xN molecular beam epitaxy growth. Applied Physics Letters, 1998, 72, 1078-1080.	3.3	80
51	High spatial resolution picosecond cathodoluminescence of InGaN quantum wells. Applied Physics Letters, 2006, 89, 232109.	3.3	80
52	Gas source molecular beam epitaxy of wurtzite GaN on sapphire substrates using GaN buffer layers. Applied Physics Letters, 1997, 71, 240-242.	3.3	79
53	Room-temperature polariton luminescence from a bulk GaN microcavity. Physical Review B, 2006, 73, .	3.2	79
54	Thermal stability of GaN investigated by Raman scattering. Applied Physics Letters, 1998, 73, 960-962.	3.3	78

#	Article	IF	CITATIONS
55	Crack-free highly reflective AllnNâ^•AlGaN Bragg mirrors for UV applications. Applied Physics Letters, 2006, 88, 051108.	3.3	78
56	Recombination coefficients of GaN-based laser diodes. Journal of Applied Physics, 2011, 109, .	2.5	77
57	Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime. Physical Review B, 2008, 77, .	3.2	76
58	InGaN/GaN quantum wells grown by molecular-beam epitaxy emitting from blue to red at 300 K. Applied Physics Letters, 2000, 77, 1268-1270.	3.3	75
59	Piezoelectric field and its influence on the pressure behavior of the light emission from GaN/AlGaN strained quantum wells. Applied Physics Letters, 2001, 79, 1483-1485.	3.3	72
60	Fully Passivated AlInN/GaN HEMTs With $f_{m T}/f_{m MAX}$ of 205/220 GHz. IEEE Electron Device Letters, 2011, 32, 1364-1366.	3.9	72
61	Gate insulation and drain current saturation mechanism in InAlNâ^•GaN metal-oxide-semiconductor high-electron-mobility transistors. Applied Physics Letters, 2007, 91, .	3.3	71
62	Role of stable and metastable Mg–H complexes in p-type GaN for cw blue laser diodes. Applied Physics Letters, 2011, 98, .	3.3	70
63	Exciton localization on basal stacking faults in a-plane epitaxial lateral overgrown GaN grown by hydride vapor phase epitaxy. Journal of Applied Physics, 2009, 105, 043102.	2.5	69
64	Influence of pressure on the optical properties oflnxGa1â^'xNepilayers and quantum structures. Physical Review B, 2001, 64, .	3.2	68
65	Polarity inversion of GaN(0001) by a high Mg doping. Journal of Crystal Growth, 2004, 269, 249-256.	1.5	68
66	Broadband blue superluminescent light-emitting diodes based on GaN. Applied Physics Letters, 2009, 95, 081107.	3.3	67
67	Large size dependence of exciton-longitudinal-optical-phonon coupling in nitride-based quantum wells and quantum boxes. Applied Physics Letters, 2002, 80, 428-430.	3.3	66
68	Impact of disorder on high quality factor III-V nitride microcavities. Applied Physics Letters, 2006, 89, 261101.	3.3	66
69	Complex behavior of biexcitons in GaN quantum dots due to a giant built-in polarization field. Physical Review B, 2008, 77, .	3.2	64
70	High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate. Applied Physics Letters, 2012, 100, .	3.3	64
71	Status of the Emerging InAlN/GaN Power HEMT Technology. Open Electrical and Electronic Engineering Journal, 2008, 2, 1-7.	0.6	64
72	Group-III nitride quantum heterostructures grown by molecular beam epitaxy. Journal of Physics Condensed Matter, 2001, 13, 6945-6960.	1.8	63

#	Article	IF	Citations
73	MOCVD of HfO ₂ and ZrO ₂ high- <i>k</i> gate dielectrics for InAlN/AlN/GaN MOS-HEMTs. Semiconductor Science and Technology, 2007, 22, 1272-1275.	2.0	62
74	Critical impact of Ehrlich–Schwöbel barrier on GaN surface morphology during homoepitaxial growth. Journal of Crystal Growth, 2016, 433, 36-42.	1.5	61
75	Epitaxial relationships between GaN and Al2O3(0001) substrates. Applied Physics Letters, 1997, 70, 643-645.	3.3	59
76	InAlN/GaN MOSHEMT With Self-Aligned Thermally Generated Oxide Recess. IEEE Electron Device Letters, 2009, 30, 1131-1133.	3.9	59
77	Observation and modeling of the time-dependent descreening of internal electric field in a wurtziteGaN/Al0.15Ga0.85Nquantum well after high photoexcitation. Physical Review B, 2004, 69, .	3.2	58
78	94-GHz Large-Signal Operation of AllnN/GaN High-Electron-Mobility Transistors on Silicon With Regrown Ohmic Contacts. IEEE Electron Device Letters, 2015, 36, 17-19.	3.9	58
79	GaN grown on Si(111) substrate: From two-dimensional growth to quantum well assessment. Applied Physics Letters, 1999, 75, 82-84.	3.3	57
80	High quality nitride based microdisks obtained via selective wet etching of AllnN sacrificial layers. Applied Physics Letters, 2008, 92, .	3.3	57
81	Ultrathin InAlN/AlN Barrier HEMT With High Performance in Normally Off Operation. IEEE Electron Device Letters, 2009, 30, 1030-1032.	3.9	57
82	Surface segregation in (Ga,In)As/GaAs quantum boxes. Physical Review B, 1997, 55, R10189-R10192.	3.2	56
83	Effects of GaAlN barriers and of dimensionality on optical recombination processes in InGaN quantum wells and quantum boxes. Applied Physics Letters, 2001, 78, 1538-1540.	3.3	56
84	Diamond overgrown InAlN/GaN HEMT. Diamond and Related Materials, 2011, 20, 604-608.	3.9	56
85	Integrated photonics on silicon with wide bandgap GaN semiconductor. Applied Physics Letters, 2013, 102, .	3.3	56
86	Monte Carlo simulation of In surface segregation during the growth oflnxGa1â^'xAs on GaAs(001). Physical Review B, 1996, 53, 998-1001.	3.2	55
87	In surface segregation in InGaN/GaN quantum wells. Journal of Crystal Growth, 2003, 251, 471-475.	1.5	55
88	Intrinsic degradation mechanism of nearly lattice-matched InAlN layers grown on GaN substrates. Journal of Applied Physics, 2013, 113, 063506.	2.5	55
89	Intraband absorptions in GaN/AlN quantum dots in the wavelength range of 1.27–2.4 μm. Applied Physics Letters, 2003, 82, 868-870.	3.3	54
90	Effects of strain and composition on the lattice parameters and applicability of Vegard's rule in Al-rich Al1â~'xInxN films grown on sapphire. Journal of Applied Physics, 2008, 103, .	2.5	54

#	Article	IF	Citations
91	Strain compensation in AllnN/GaN multilayers on GaN substrates: Application to the realization of defect-free Bragg reflectors. Applied Physics Letters, 2011, 98, .	3.3	54
92	Indium surfactant effect on AlNâ-GaN heterostructures grown by metal-organic vapor-phase epitaxy: Applications to intersubband transitions. Applied Physics Letters, 2006, 88, 151902.	3.3	52
93	Blue lasing at room temperature in high quality factor GaNâ^•AllnN microdisks with InGaN quantum wells. Applied Physics Letters, 2007, 90, 061106.	3.3	52
94	AlGaN/GaN HEMT on (111) single crystalline diamond. Electronics Letters, 2010, 46, 299.	1.0	52
95	Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7 <i>μ</i> m. Applied Physics Letters, 2012, 100, .	3.3	52
96	Ultraviolet GaN light-emitting diodes grown by molecular beam epitaxy using NH3. Applied Physics Letters, 1998, 72, 82-84.	3.3	51
97	Acoustic phonon scattering of two-dimensional electrons in GaN/AlGaN heterostructures. Applied Physics Letters, 2002, 80, 1228-1230.	3.3	51
98	Blue lasing at room temperature in an optically pumped lattice-matched AlInN/GaN VCSEL structure. Electronics Letters, 2007, 43, 924.	1.0	51
99	Continuous Wave Blue Lasing in III-Nitride Nanobeam Cavity on Silicon. Nano Letters, 2015, 15, 1259-1263.	9.1	51
100	A quantum optical study of thresholdless lasing features in high- \hat{l}^2 nitride nanobeam cavities. Nature Communications, 2018, 9, 564.	12.8	50
101	Photoreflectance investigations of the bowing parameter in AlGaN alloys lattice-matched to GaN. Applied Physics Letters, 1999, 74, 3353-3355.	3.3	49
102	Molecular Beam Epitaxy of GaN under N-rich Conditions using NH3. Japanese Journal of Applied Physics, 1999, 38, 618-621.	1.5	49
103	Gate-lag and drain-lag effects in (GaN)/InAlN/GaN and InAlN/AlN/GaN HEMTs. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2019-2022.	1.8	49
104	102-GHz AllnN/GaN HEMTs on Silicon With 2.5-W/mm Output Power at 10 GHz. IEEE Electron Device Letters, 2009, 30, 796-798.	3.9	49
105	Exciton dynamics at a single dislocation in GaN probed by picosecond time-resolved cathodoluminescence. Applied Physics Letters, 2016, 109, .	3.3	49
106	Statistical correction of atom probe tomography data of semiconductor alloys combined with optical spectroscopy: The case of Al0.25Ga0.75N. Journal of Applied Physics, 2016, 119, .	2.5	49
107	Impact of inhomogeneous excitonic broadening on the strong exciton-photon coupling in quantum well nitride microcavities. Physical Review B, 2006, 73, .	3.2	48
108	High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy. Applied Physics Letters, 2003, 82, 499-501.	3.3	47

#	Article	IF	Citations
109	Lattice-matched distributed Bragg reflectors for nitride-based vertical cavity surface emitting lasers. Electronics Letters, 2005, 41, 94.	1.0	45
110	GaN epitaxial growth on sapphire (0 0 0 1): the role of the substrate nitridation. Journal of Crystal Growth, 1997, 178, 220-228.	1.5	44
111	High doping level in Mg-doped GaN layers grown at low temperature. Journal of Applied Physics, 2008, 103, 013110.	2.5	44
112	Low-temperature time-resolved cathodoluminescence study of exciton dynamics involving basal stacking faults in a-plane GaN. Applied Physics Letters, 2009, 94, .	3.3	44
113	Doubly resonant second-harmonic generation of a vortex beam from a bound state in the continuum. Optica, 2020, 7, 1126.	9.3	44
114	Injection Dependence of the Electroluminescence Spectra of Phosphor Free GaN-Based White Light Emitting Diodes. Physica Status Solidi A, 2002, 192, 139-143.	1.7	43
115	Photoluminescence energy and linewidth in GaN/AlN stackings of quantum dot planes. Journal of Applied Physics, 2004, 96, 180-185.	2.5	43
116	High-temperature Mott transition in wide-band-gap semiconductor quantum wells. Physical Review B, 2014, 90, .	3.2	43
117	Optical properties of GaN epilayers and GaN/AlGaN quantum wells grown by molecular beam epitaxy on GaN(0001) single crystal substrate. Journal of Applied Physics, 2000, 88, 183-187.	2.5	42
118	Comparison of the In distribution in InGaN/GaN quantum well structures grown by molecular beam epitaxy and metalorganic vapor phase epitaxy. Journal of Crystal Growth, 2004, 262, 145-150.	1.5	42
119	Inhomogeneous broadening ofAlxGa1â°'xNâ°•GaNquantum wells. Physical Review B, 2005, 71, .	3.2	42
120	Visible InGaN/GaN Quantum-Dot Materials and Devices. Proceedings of the IEEE, 2007, 95, 1853-1865.	21.3	42
121	<i>M</i> -Plane GaN/InAlN Multiple Quantum Wells in Core–Shell Wire Structure for UV Emission. ACS Photonics, 2014, 1, 38-46.	6.6	42
122	Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>m</mml:mi></mml:math> -plane InGaN/GaN quantum wells. Physical Review B, 2016, 94, .	3.2	41
123	Enhancement of Auger recombination induced by carrier localization in InGaN/GaN quantum wells. Physical Review B, 2017, 95, .	3.2	41
124	AlN grown on Si(1 1 1) by ammonia-molecular beam epitaxy in the 900–1200 °C temperature range. Journal of Crystal Growth, 2017, 476, 58-63.	1.5	41
125	GalnN/GaN multiple-quantum-well light-emitting diodes grown by molecular beam epitaxy. Applied Physics Letters, 1999, 74, 3616-3618.	3.3	40
126	Temperature Dependence of Optical Properties of h-GaN Films Studied by Reflectivity and Ellipsometry. Japanese Journal of Applied Physics, 2000, 39, 20-25.	1.5	40

#	Article	IF	Citations
127	Near infrared absorption and room temperature photovoltaic response in AlNâ [•] GaN superlattices grown by metal-organic vapor-phase epitaxy. Applied Physics Letters, 2006, 89, 041106.	3.3	40
128	Surfactant-mediated molecular-beam epitaxy of Ill–V strained-layer heterostructures. Journal of Crystal Growth, 1995, 150, 460-466.	1.5	39
129	Time dependence of the photoluminescence of GaN/AlN quantum dots under high photoexcitation. Physical Review B, 2003, 68, .	3.2	39
130	Small-signal characteristics of AllnN/GaN HEMTs. Electronics Letters, 2006, 42, 779.	1.0	39
131	Thermally induced voltage shift in capacitance–voltage characteristics and its relation to oxide/semiconductor interface states in Ni/Al ₂ O ₃ /InAlN/GaN heterostructures. Semiconductor Science and Technology, 2009, 24, 035008.	2.0	39
132	Mg doping for <i>p</i> -type AllnN lattice-matched to GaN. Applied Physics Letters, 2012, 101, 082113.	3.3	39
133	Control of the polarity of GaN films using an Mg adsorption layer. Journal of Crystal Growth, 2003, 251, 460-464.	1.5	38
134	Study of the epitaxial relationships between III-nitrides and M-plane sapphire. Journal of Applied Physics, 2010, 108, 113521.	2.5	38
135	Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon. APL Photonics, 2017, 2, .	5.7	38
136	Strain-induced interface instability in GaNâ^•AlN multiple quantum wells. Applied Physics Letters, 2007, 91, 061927.	3.3	37
137	Ultrahigh-Speed AllnN/GaN High Electron Mobility Transistors Grown on (111) High-Resistivity Silicon with <i>F</i> _T = 143 GHz. Applied Physics Express, 2010, 3, 094101.	2.4	37
138	Hot-Electron-Related Degradation in InAlN/GaN High-Electron-Mobility Transistors. IEEE Transactions on Electron Devices, 2014, 61, 2793-2801.	3.0	37
139	Observation of long-lived oblique excitons in GaN-AlGaN multiple quantum wells. Physical Review B, 1999, 59, 10246-10250.	3.2	36
140	GaN/AlGaN quantum wells for UV emission: heteroepitaxy versus homoepitaxy. Semiconductor Science and Technology, 2001, 16, 358-361.	2.0	36
141	Comprehensive description of the dynamical screening of the internal electric fields of AlGaN/GaN quantum wells in time-resolved photoluminescence experiments. Journal of Applied Physics, 2003, 93, 400-409.	2.5	36
142	Toward Bright and Pure Single Photon Emitters at 300 K Based on GaN Quantum Dots on Silicon. ACS Photonics, 2020, 7, 1515-1522.	6.6	36
143	GaN/AlxGa1â^xN quantum wells grown by molecular beam epitaxy with thickness control at the monolayer scale. Applied Physics Letters, 1998, 73, 1260-1262.	3.3	35
144	Scale Effects on Exciton Localization and Nonradiative Processes in GaN/AlGaN Quantum Wells. Physica Status Solidi A, 2000, 180, 127-132.	1.7	35

#	Article	IF	Citations
145	Influence of high Mg doping on the microstructural and optoelectronic properties of GaN. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 224-228.	3.5	35
146	Engineering the Lateral Optical Guiding in Gallium Nitride-Based Vertical-Cavity Surface-Emitting Laser Cavities to Reach the Lowest Threshold Gain. Japanese Journal of Applied Physics, 2013, 52, 08JG04.	1.5	35
147	Optical study of segregation effects on the electronic properties of molecular-beam-epitaxy grown (In,Ga)As/GaAs quantum wells. Physical Review B, 1997, 55, 2406-2412.	3.2	34
148	Microroughness and exciton localization in (Al,Ga)As/GaAs quantum wells. Physical Review B, 1997, 55, 5253-5258.	3.2	34
149	Surface kinetics of GaN evaporation and growth by molecular-beam epitaxy. Surface Science, 2000, 450, 191-203.	1.9	34
150	Submicron metal–semiconductor–metal ultraviolet detectors based on AlGaN grown on silicon: Results and simulation. Journal of Applied Physics, 2002, 92, 5602-5604.	2.5	34
151	Al 0.83 In 0.17 N lattice-matched to GaN used as an optical blocking layer in GaN-based edge emitting lasers. Applied Physics Letters, 2009, 94, .	3.3	34
152	RF Performance of InAlN/GaN HFETs and MOSHFETs With <formula formulatype="inline"><tex notation="TeX"> \$f_{T} imes L_{G}\$</tex></formula> up to 21 <formula formulatype="inline"><tex notation="TeX">\$hbox{GHz}cdot muhbox{m}\$</tex> </formula> . IEEE Electron Device Letters, 2010, 31, 180-182.	3.9	34
153	Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination. Optics Express, 2014, 22, 411.	3.4	34
154	Submicron periodic poling and chemical patterning of GaN. Applied Physics Letters, 2005, 87, 062106.	3.3	33
155	Pinning and Depinning of the Polarization of Exciton-Polariton Condensates at Room Temperature. Physical Review Letters, 2010, 104, 166402.	7.8	33
156	Schottky-barrier normally off GaN/InAlN/AlN/GaN HEMT with selectively etched access region. IEEE Electron Device Letters, 2013, 34, 432-434.	3.9	33
157	Critical thickness of GaN on AlN: impact of growth temperature and dislocation density. Semiconductor Science and Technology, 2017, 32, 075010.	2.0	33
158	Elastic misfit stress relaxation in highly strained InGaAs/GaAs structures. Applied Physics Letters, 1994, 65, 1162-1164.	3.3	32
159	Stranski-Krastanov GaNâ^•AlN quantum dots grown by metal organic vapor phase epitaxy. Journal of Applied Physics, 2006, 99, 083509.	2.5	32
160	Phase diagram of a polariton laser from cryogenic to room temperature. Physical Review B, 2009, 80, .	3.2	32
161	Polarization field mapping of Al0.85In0.15N/AlN/GaN heterostructure. Applied Physics Letters, 2009, 94,	3.3	32
162	Combining diamond electrodes with GaN heterostructures for harsh environment ISFETs. Diamond and Related Materials, 2009, 18, 884-889.	3.9	32

#	Article	IF	Citations
163	Current transport and barrier height evaluation in Ni/InAlN/GaN Schottky diodes. Applied Physics Letters, 2010, 96, 223501.	3.3	32
164	Exciton recombination dynamics in a-plane (Al,Ga)N/GaN quantum wells probed by picosecond photo and cathodoluminescence. Journal of Applied Physics, 2010, 107, .	2.5	32
165	Sputtering of (001)AlN thin films: Control of polarity by a seed layer. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, L61-L63.	1.2	32
166	Propagating Polaritons in III-Nitride Slab Waveguides. Physical Review Applied, 2017, 7, .	3.8	32
167	InAlN underlayer for near ultraviolet InGaN based light emitting diodes. Applied Physics Express, 2019, 12, 034002.	2.4	32
168	In situimaging of threading dislocation terminations at the surface of GaN(0001) epitaxially grown on Si(111). Physical Review B, 2000, 61, 7618-7621.	3.2	31
169	Room temperature polariton luminescence from a GaNâ^•AlGaN quantum well microcavity. Applied Physics Letters, 2006, 89, 071107.	3.3	31
170	Proposal and Performance Analysis of Normally Off \$ hbox{n}^{++}\$ GaN/InAlN/AlN/GaN HEMTs With 1-nm-Thick InAlN Barrier. IEEE Transactions on Electron Devices, 2010, 57, 2144-2154.	3.0	31
171	High Power Blue-Violet Superluminescent Light Emitting Diodes with InGaN Quantum Wells. Applied Physics Express, 2010, 3, 061002.	2.4	31
172	Optical absorption edge broadening in thick InGaN layers: Random alloy atomic disorder and growth mode induced fluctuations. Applied Physics Letters, 2018, 112, .	3.3	31
173	100-nm-Gate (Al,In)N/GaN HEMTs Grown on SiC With $F_{m} = hbox{144} hbox{GHz}$. IEEE Electron Device Letters, 2010, 31, 293-295.	3.9	30
174	Electrical properties of InAlN/GaN high electron mobility transistor with Al2O3, ZrO2, and GdScO3 gate dielectrics. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	1.2	30
175	Leakage mechanisms in InAlN based heterostructures. Journal of Applied Physics, 2014, 115, .	2.5	30
176	Nano-scale luminescence characterization of individual InGaN/GaN quantum wells stacked in a microcavity using scanning transmission electron microscope cathodoluminescence. Applied Physics Letters, 2014, 105, 032101.	3.3	30
177	Optical investigations in (In,Ga)As/GaAs quantum wells grown by metalorganic molecular-beam epitaxy. Physical Review B, 1995, 51, 13274-13280.	3.2	29
178	Inelastic Light Scattering by Phonons in Hexagonal GaN-AIN Nanostructures. Physica Status Solidi A, 2001, 183, 157-161.	1.7	29
179	Optical investigation of micrometer and nanometer-size individual GaN pillars fabricated by reactive ion etching. Journal of Applied Physics, 2002, 91, 6520.	2.5	29
180	Structural Defects and Relation with Optoelectronic Properties in Highly Mg-Doped GaN. Physica Status Solidi A, 2002, 192, 394-400.	1.7	29

#	Article	IF	CITATIONS
181	MBE growth of ALGaN/GaN HEMTS on resistive Si(111) substrate with RF small signal and power performances. Journal of Crystal Growth, 2003, 251, 811-815.	1.5	29
182	AllnN-Based HEMTs for Large-Signal Operation at 40 GHz. IEEE Transactions on Electron Devices, 2013, 60, 3091-3098.	3.0	29
183	InGaN laser diode with metal-free laser ridge using n ⁺ -GaN contact layers. Applied Physics Express, 2016, 9, 061004.	2.4	29
184	GaN and GalnN quantum dots: an efficient way to get luminescence in the visible spectrum range. Applied Surface Science, 2000, 164, 241-245.	6.1	28
185	Selective oxidation of AllnN layers for current confinement in Ill–nitride devices. Applied Physics Letters, 2005, 87, 072102.	3.3	28
186	Efficient current injection scheme for nitride vertical cavity surface emitting lasers. Applied Physics Letters, 2007, 90, 033514.	3.3	28
187	GaN grown on (111) single crystal diamond substrate by molecular beam epitaxy. Journal of Crystal Growth, 2009, 311, 4539-4542.	1.5	28
188	A simplified GaN/AlGaN quantum cascade detector with an alloy extractor. Applied Physics Letters, 2012, 101 , .	3.3	28
189	Ultrathin Body InAlN/GaN HEMTs for High-Temperature (600\$^{circ} {m C}\$) Electronics. IEEE Electron Device Letters, 2013, 34, 496-498.	3.9	28
190	Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared. Applied Physics Letters, 2014, 105, .	3.3	28
191	Improvement of the growth of InxGa1â^'xAs on GaAs (001) using Te as surfactant. Applied Physics Letters, 1993, 63, 66-68.	3.3	27
192	Realâ€time investigation of In surface segregation in chemical beam epitaxy of In0.5Ga0.5P on GaAs (001). Applied Physics Letters, 1996, 68, 3579-3581.	3.3	27
193	Coupled longitudinal optic phonon-plasmon modes in p-type GaN. Solid State Communications, 1998, 106, 491-494.	1.9	27
194	Multilayer (Al,Ga)N Structures for Solar-Blind Detection. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10, 752-758.	2.9	27
195	Anomalous composition dependence of the band gap pressure coefficients in In-containing nitride semiconductors. Physical Review B, 2010, 81, .	3.2	27
196	Intrinsic dynamics of weakly and strongly confined excitons in nonpolar nitride-based heterostructures. Physical Review B, 2011, 83, .	3.2	27
197	High quality thin GaN templates grown by hydride vapor phase epitaxy on sapphire substrates. Applied Physics Letters, 2006, 88, 241914, Stress-modulated composition in the vicinity of dislocations in nearly lattice matched Al <mml:math< td=""><td>3.3</td><td>26</td></mml:math<>	3.3	26
198	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow> xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>â^²</mml:mo></mml:mrow></mml:msub></mml:mrow>	3.2	26

#	Article	IF	CITATIONS
199	Optical, structural, and morphological characterisation of epitaxial ZnO films grown by pulsed-laser deposition. Thin Solid Films, 2013, 539, 55-59.	1.8	26
200	Backward diodes using heavily Mg-doped GaN growth by ammonia molecular-beam epitaxy. Applied Physics Letters, 2016, 108, .	3.3	26
201	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>Al</mml:mi><mml:mo>,</mml:mo><mml:mi>GaN</mml:mi></mml:mrow> Output mathvariant="normal">N <mml:mi><mml:mo>/</mml:mo><mml:mi>GaN</mml:mi>Output mathvariant="normal">N</mml:mi> <mml:mi><mml:mo>/</mml:mo></mml:mi> <mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:m< td=""><td>3.0</td><td>784314 rg<mark>8</mark> 26</td></mml:m<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi>	3.0	784314 rg <mark>8</mark> 26
202	Wells. Physical Review Applied, 2016, 6 Signature of GaN–AlN quantum dots by nonresonant Raman scattering. Applied Physics Letters, 2000, 77, 2174-2176.	3.3	25
203	Lattice-Matched GaN–InAlN Waveguides at \$lambda=1.55 mu\$m Grown by Metal–Organic Vapor Phase Epitaxy. IEEE Photonics Technology Letters, 2008, 20, 102-104.	2.5	25
204	Self heating in AllnN/AlN/GaN high power devices: Origin and impact on contact breakdown and IV characteristics. Journal of Applied Physics, 2011, 109, .	2.5	25
205	Near-infrared characterization of gallium nitride photonic-crystal waveguides and cavities. Optics Letters, 2012, 37, 4588.	3.3	25
206	On the origin of basal stacking faults in nonpolar wurtzite films epitaxially grown on sapphire substrates. Journal of Applied Physics, 2012, 112, .	2.5	25
207	Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response. Physical Review B, 2012, 86, .	3.2	25
208	Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photonics, 2022, 7, .	5.7	25
209	Extremely sharp dependence of the exciton oscillator strength on quantum-well width in theGaN/AlxGa1â°xNsystem:â€,The polarization field effect. Physical Review B, 2001, 64, .	3.2	24
210	a-plane GaN grown on r-plane sapphire substrates by hydride vapor phase epitaxy. Journal of Crystal Growth, 2007, 300, 186-189.	1.5	24
211	A novel class of coherent light emitters: polariton lasers. Semiconductor Science and Technology, 2011, 26, 014030.	2.0	24
212	Optical and structural characterization of self-organized stacked GaN/AlN quantum dots. Journal of Physics Condensed Matter, 2004, 16, S115-S126.	1.8	23
213	Spin and interaction effects in Shubnikov–de Haas oscillations and the quantum Hall effect in GaN/AlGaN heterostructures. Journal of Physics Condensed Matter, 2004, 16, 3421-3432.	1.8	23
214	Stress control in GaN/sapphire templates for the fabrication of crack-free thick layers. Journal of Crystal Growth, 2006, 289, 445-449.	1.5	23
215	Blue laser diodes including lattice-matched Al0.83In0.17N bottom cladding layer. Electronics Letters, 2008, 44, 521.	1.0	23
216	Transport of dipolar excitons in (Al,Ga)N/GaN quantum wells. Physical Review B, 2015, 91, .	3.2	23

#	Article	IF	Citations
217	Selfâ€aligned normallyâ€off metal–oxide–semiconductor n ⁺⁺ GaN/InAlN/GaN high electron mobility transistors. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1086-1090.	1.8	23
218	Calcium impurity as a source of non-radiative recombination in (In,Ga)N layers grown by molecular beam epitaxy. Applied Physics Letters, 2016, 109, .	3.3	23
219	Optical absorption and oxygen passivation of surface states in III-nitride photonic devices. Journal of Applied Physics, 2018, 123, .	2.5	23
220	Alloy disorder limited mobility of InGaN two-dimensional electron gas. Applied Physics Letters, 2018, 112, .	3.3	23
221	Extension of the layer-by-layer growth regime of InxGa1-xAs on GaAs (001). Semiconductor Science and Technology, 1993, 8, 2031-2034.	2.0	22
222	Narrow UV emission from homogeneous GaNâ^•AlGaN quantum wells. Applied Physics Letters, 2007, 90, 021905.	3.3	22
223	High-Mobility AlGaN/GaN Two-Dimensional Electron Gas Heterostructure Grown on (111) Single Crystal Diamond Substrate. Japanese Journal of Applied Physics, 2010, 49, 061001.	1.5	22
224	Statistical nanoscale study of localised radiative transitions in GaN/AlGaN quantum wells and AlGaN epitaxial layers. Semiconductor Science and Technology, 2016, 31, 095009.	2.0	22
225	Composition Metrology of Ternary Semiconductor Alloys Analyzed by Atom Probe Tomography. Journal of Physical Chemistry C, 2018, 122, 16704-16714.	3.1	22
226	Improved GaInAs/GaAs heterostructures by high growth rate molecular beam epitaxy. Applied Physics Letters, 1994, 64, 2664-2666.	3.3	21
227	Optical studies of highly strained InGaAs/GaAs quantum wells grown on vicinal surfaces. Journal of Applied Physics, 1997, 81, 3281-3289.	2.5	21
228	Modelling of thermally detected optical absorption and luminescence of (In,Ga)N/GaN heterostructures. Solid State Communications, 2000, 115, 575-579.	1.9	21
229	Effect of fluoride plasma treatment on InAIN/GaN HEMTs. Electronics Letters, 2008, 44, 696.	1.0	21
230	<i> $>$ n+ $<$ /i> $>$ -GaN grown by ammonia molecular beam epitaxy: Application to regrown contacts. Applied Physics Letters, 2014, 105, .	3.3	21
231	Effects of InAlN underlayer on deep traps detected in near-UV InGaN/GaN single quantum well light-emitting diodes. Journal of Applied Physics, 2019, 126, .	2.5	21
232	III-nitride photonic cavities. Nanophotonics, 2020, 9, 569-598.	6.0	21
233	Modeling the electrical characteristics of InGaN/GaN LED structures based on experimentally-measured defect characteristics. Journal Physics D: Applied Physics, 2021, 54, 425105.	2.8	21
234	Molecular beam epitaxy growth of nitride materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 59, 39-46.	3.5	20

#	Article	IF	CITATIONS
235	Dynamics of Excitons in GaN-AlGaN MQWs with Varying Depths, Thicknesses and Barrier Widths. Physica Status Solidi (B): Basic Research, 1999, 216, 361-364.	1.5	20
236	Direct signature of strained GaN quantum dots by Raman scattering. Applied Physics Letters, 2001, 79, 686-688.	3.3	20
237	Selective photoluminescence spectroscopy of shallow levels in wide band gap semiconductors. Physica B: Condensed Matter, 2001, 302-303, 39-53.	2.7	20
238	Different pressure behavior of GaN/AlGaN quantum structures grown along polar and nonpolar crystallographic directions. Journal of Applied Physics, 2009, 105, .	2.5	20
239	Room temperature polariton lasing in III-nitride microcavities: a comparison with blue GaN-based vertical cavity surface emitting lasers. , 2009, , .		20
240	Density control of GaN quantum dots on AlN single crystal. Applied Physics Letters, 2019, 114, .	3.3	20
241	Imaging Nonradiative Point Defects Buried in Quantum Wells Using Cathodoluminescence. Nano Letters, 2021, 21, 5217-5224.	9.1	20
242	Defect incorporation in In-containing layers and quantum wells: experimental analysis via deep level profiling and optical spectroscopy. Journal Physics D: Applied Physics, 2021, 54, 025108.	2.8	20
243	Violet to Orange Room Temperature Luminescence from GaN Quantum Dots on Si(111) Substrates. Physica Status Solidi (B): Basic Research, 1999, 216, 451-455.	1.5	19
244	Photoluminescence spectroscopy on annealed molecular beam epitaxy grown GaN. Journal of Applied Physics, 2001, 89, 1070-1074.	2.5	19
245	Built-in electric field and large Stokes shift in near-lattice-matched GaNâ^•AllnN quantum wells. Applied Physics Letters, 2008, 92, .	3.3	19
246	Cavity-enhanced optical Hall effect in two-dimensional free charge carrier gases detected at terahertz frequencies. Optics Letters, 2015, 40, 2688.	3.3	19
247	Single photon emission and recombination dynamics in self-assembled GaN/AlN quantum dots. Light: Science and Applications, 2022, 11, 114.	16.6	19
248	Time-Resolved Spectroscopy of MBE-Grown InGaN/GaN Self-Formed Quantum Dots. Physica Status Solidi A, 2000, 180, 375-380.	1.7	18
249	Raman scattering in GaN pillar arrays. Journal of Applied Physics, 2002, 91, 2866-2869.	2.5	18
250	Effects of Polarization in Optoelectronic Quantum Structures. , 2008, , 467-511.		18
251	M-Plane GaN Grown onm-Plane Sapphire by Hydride Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2009, 48, 020226.	1.5	18
252	Exact determination of electrical properties of wurtzite Al _{1â^'<i>x</i>} In _{<i>x</i>} N/(AlN)/GaN heterostructures (0.07Ââ%Â <i>x</i> Àâ%Â0.21) l means of a detailed charge balance equation. International Journal of Microwave and Wireless Technologies, 2010, 2, 13-20.	⁰ 1.9	18

#	Article	IF	Citations
253	Superluminescent light emitting diodes: the best out of two worlds. Proceedings of SPIE, 2012, , .	0.8	18
254	InGaN heterostructures grown by molecular beam epitaxy:. Journal of Crystal Growth, 2001, 227-228, 466-470.	1.5	17
255	Evaluation of AllnNâ^•GaN HEMTs on sapphire substrate in microwave, time and temperature domains. Electronics Letters, 2007, 43, 309.	1.0	17
256	Current collapse reduction in InAlN/GaN MOS HEMTs by in situ surface pre-treatment and atomic layer deposition of ZrO2 high-k gate dielectrics. Electronics Letters, 2009, 45, 570.	1.0	17
257	Impact of saturation on the polariton renormalization in III-nitride based planar microcavities. Physical Review B, 2013, 88, .	3.2	17
258	Ultrathin InAlN/GaN heterostructures on sapphire for high on/off current ratio high electron mobility transistors. Journal of Applied Physics, 2013, 113, 214503.	2.5	17
259	Low temperature p-type doping of (Al)GaN layers using ammonia molecular beam epitaxy for InGaN laser diodes. Applied Physics Letters, 2014, 105, 241103.	3.3	17
260	Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications. Superlattices and Microstructures, 2017, 102, 221-234.	3.1	17
261	GaN buffer growth temperature and efficiency of InGaN/GaN quantum wells: The critical role of nitrogen vacancies at the GaN surface. Applied Physics Letters, 2021, 118, .	3.3	17
262	Confined electron states in ultrathin AlAs single quantum wells under pressure. Physical Review B, 1992, 45, 11846-11853.	3.2	16
263	Indium surface segregation during chemical beam epitaxy of and heterostructures. Journal of Crystal Growth, 1997, 175-176, 1242-1246.	1.5	16
264	Carrier Dynamics in Group-III Nitride Low-Dimensional Systems: Localization versus Quantum-Confined Stark Effect. Physica Status Solidi (B): Basic Research, 2001, 228, 65-72.	1.5	16
265	Fabrication of GaN photonic crystals for 400 nm wavelength. Microelectronic Engineering, 2001, 57-58, 843-849.	2.4	16
266	Blue Resonant Cavity Light Emitting Diodes with a High-Al-Content GaN/AlGaN Distributed Bragg Reflector. Japanese Journal of Applied Physics, 2003, 42, L1509-L1511.	1.5	16
267	Biexciton kinetics in GaN quantum wells: Time-resolved and time-integrated photoluminescence measurements. Physical Review B, 2008, 77, .	3.2	16
268	Offâ€state breakdown in InAlN/AlN/GaN high electron mobility transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S925.	0.8	16
269	Low-Noise Microwave Performance of 0.1 <formula formulatype="inline"> <tex Notation="TeX">\$mu\$</tex </formula> m Gate AllnN/GaN HEMTs on SiC. IEEE Microwave and Wireless Components Letters, 2010, 20, 453-455.	3.2	16
270	Explanation of threshold voltage scaling in enhancement-mode InAlN/AlN–GaN metal oxide semiconductor high electron mobility transistors on Si substrates. Thin Solid Films, 2012, 520, 6230-6232.	1.8	16

#	Article	IF	Citations
271	GaN-on-insulator technology for high-temperature electronics beyond 400 \hat{A}° C. Semiconductor Science and Technology, 2013, 28, 074026.	2.0	16
272	Grandjean and Massies reply. Physical Review Letters, 1993, 70, 1031-1031.	7.8	15
273	Kinetics of surfactant-mediated epitaxy of III-V semiconductors. Physical Review B, 1996, 53, R13231-R13234.	3.2	15
274	Strong Carrier Localization in GalnN/GaN Quantum Dots Grown by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1999, 38, L1357-L1359.	1.5	15
275	Surface morphology of GaN grown by molecular beam epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 56-58.	3.5	15
276	Study of light emission from GaN/AlGaN quantum wells under power-dependent excitation. Journal of Applied Physics, 2002, 91, 9622.	2.5	15
277	The Effects of Localization and of Electric Fields on LO-Phonon-Exciton Coupling in InGaN/GaN Quantum Wells and Quantum Boxes. Physica Status Solidi A, 2002, 190, 149-154.	1.7	15
278	About some optical properties of AlxGa1â^'xN /GaN quantum wells grown by molecular beam epitaxy. Superlattices and Microstructures, 2004, 36, 659-674.	3.1	15
279	AlGaN-Free Blue Ill–Nitride Laser Diodes Grown on <i>c</i> -Plane GaN Substrates. Applied Physics Express, 2010, 3, 092102.	2.4	15
280	One-dimensional exciton luminescence induced by extended defects in nonpolar GaN/(Al,Ga)N quantum wells. Semiconductor Science and Technology, 2011, 26, 025012.	2.0	15
281	Standardâ€free composition measurements of Al <i></i> In _{1–<i>x</i>} N by lowâ€loss electron energy loss spectroscopy. Physica Status Solidi - Rapid Research Letters, 2011, 5, 50-52.	2.4	15
282	InGaN/GaN quantum wells for polariton laser diodes: Role of inhomogeneous broadening. Journal of Applied Physics, 2014, 115, .	2.5	15
283	Ultrafast-nonlinear ultraviolet pulse modulation in an AllnGaN polariton waveguide operating up to room temperature. Nature Communications, 2021, 12, 3504.	12.8	15
284	Advantages and remaining issues of state-of-the-art <i>m</i> -plane freestanding GaN substrates grown by halide vapor phase epitaxy for <i>m</i> -plane InGaN epitaxial growth. Semiconductor Science and Technology, 2012, 27, 024008.	2.0	15
285	Band edge versus deep luminescence of InxGa1â^'xN layers grown by molecular beam epitaxy. Applied Physics Letters, 1998, 72, 3190-3192.	3.3	14
286	High Performance Solar Blind Detectors Based on AlGaN Grown by MBE on Si. Physica Status Solidi A, 2001, 188, 325-328.	1.7	14
287	Magnetophotoluminescence of GaN/AlxGa1â^xNquantum wells: Valence band reordering and excitonic binding energies. Physical Review B, 2001, 63, .	3.2	14
288	Internal photoemission in solar blind AlGaN Schottky barrier photodiodes. Applied Physics Letters, 2005, 86, 063511.	3.3	14

#	Article	IF	Citations
289	Selective etching of AllnN/GaN heterostructures for MEMS technology. Microelectronic Engineering, 2007, 84, 1152-1156.	2.4	14
290	Interface States and Trapping Effects in Al ₂ O ₃ - and ZrO ₂ /InAlN/AlN/GaN Metal–Oxide–Semiconductor Heterostructures. Japanese Journal of Applied Physics, 2009, 48, 090201.	1.5	14
291	Investigation of the In composition in InGaN/GaN quantum wells deposited by MOVPE and/or MBE with emission from violet to green. Physica Status Solidi (B): Basic Research, 2011, 248, 1187-1190.	1.5	14
292	Thermal annealing of molecular beam epitaxy-grown InGaN/GaN single quantum well. Semiconductor Science and Technology, 2012, 27, 105023.	2.0	14
293	First demonstration of plasmonic GaN quantum cascade detectors with enhanced efficiency at normal incidence. Optics Express, 2014, 22, 21069.	3.4	14
294	Shallow donor and deep DX-like center in InAlN layers nearly lattice-matched to GaN. Physical Review B, 2014, 90, .	3.2	14
295	Biexcitonic molecules survive excitons at the Mott transition. Nature Communications, 2014, 5, 5251.	12.8	14
296	<inline-formula> <tex-math notation="LaTeX">\$W\$ </tex-math> </inline-formula> -Band MMIC Amplifiers Based on AllnN/GaN HEMTs Grown on Silicon. IEEE Electron Device Letters, 2016, 37, 1025-1028.	3.9	14
297	Quantification of scattering loss of III-nitride photonic crystal cavities in the blue spectral range. Physical Review B, 2017, 95, .	3.2	14
298	Impact of defects on Auger recombination in $<$ i>>c-plane InGaN/GaN single quantum well in the efficiency droop regime. Applied Physics Letters, 2020, 116, .	3.3	14
299	Photoluminescence under pressure of ultrathin AlAs layers grown on GaAs vicinal surfaces: A search for lateral confinement effects. Physical Review B, 1993, 47, 1292-1298.	3.2	13
300	Photoluminescence energy and interface chemistry of GalnP/GaAs quantum wells. Applied Physics Letters, 1997, 71, 3552-3554.	3.3	13
301	GaN on Si(111): From Growth Optimization to Optical Properties of Quantum Well Structures. Physica Status Solidi (B): Basic Research, 1999, 216, 101-105.	1.5	13
302	Enhanced luminescence efficiency due to exciton localization in self-assembled InGaN/GaN quantum dots. Solid State Communications, 2000, 113, 495-498.	1.9	13
303	Optical Investigations and Absorption Coefficient Determination of InGaN/GaN Quantum Wells. Physica Status Solidi A, 2002, 190, 135-140.	1.7	13
304	Impact of quantum confinement and quantum confined Stark effect on biexciton binding energy in GaNâ [•] AlGaN quantum wells. Applied Physics Letters, 2008, 93, .	3.3	13
305	Homogeneous and inhomogeneous linewidth broadening of single polar GaN/AlN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S598-S601.	0.8	13
306	High reflectivity airgap distributed Bragg reflectors realized by wet etching of AllnN sacrificial layers. Applied Physics Letters, 2009, 95, .	3.3	13

#	Article	IF	CITATIONS
307	Thermal oxidation of lattice matched InAIN/GaN heterostructures. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 13-16.	0.8	13
308	Observation of dodecagon-shape V-defects in GaN/AllnN multiple quantum wells. Applied Physics Letters, 2010, 97, 161902.	3.3	13
309	Emission characteristics of GaN-based blue lasers including a lattice matched Al0.83In0.17N optical blocking layer for improved optical beam quality. Applied Physics Letters, 2010, 97, 111104.	3.3	13
310	Tailoring the light-matter coupling in anisotropic microcavities: Redistribution of oscillator strength in strained <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>m</mml:mi></mml:math> -plane GaN/AlGaN quantum wells. Physical Review B, 2011, 84, .	3.2	13
311	Impact of biexcitons on the relaxation mechanisms of polaritons in III-nitride based multiple quantum well microcavities. Physical Review B, 2012, 85, .	3.2	13
312	Mode locking in monolithic two-section $InGaN$ blue-violet semiconductor lasers. Applied Physics Letters, $2013,102,102$	3.3	13
313	Buffer-Related Degradation Aspects of Single and Double-Heterostructure Quantum Well InAlN/GaN High-Electron-Mobility Transistors. Japanese Journal of Applied Physics, 2012, 51, 054102.	1.5	13
314	Characterization of Near-Edge-Optical Transitions in Undoped and Doped GaN/Sapphire Grown by MOVPE, HVPE, and GSMBE. Materials Research Society Symposia Proceedings, 1996, 449, 695.	0.1	12
315	GaN based LEDs grown by molecular beam epitaxy. Electronics Letters, 1997, 33, 2156.	1.0	12
316	Interface Effects on the Photoluminescence of GaAs/GalnP Quantum Wells. Japanese Journal of Applied Physics, 1998, 37, 15-22.	1.5	12
317	Reduction of Carrier In-Plane Mobility in Group-III Nitride Based Quantum Wells: The Role of Internal Electric Fields. Physica Status Solidi A, 2001, 183, 61-66.	1.7	12
318	Solar blind detectors based on AlGaN grown on sapphire. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 964-971.	0.8	12
319	Nonpolar GaN-based microcavity using AlNâ^•GaN distributed Bragg reflector. Applied Physics Letters, 2008, 92, 061114.	3.3	12
320	Implementation of Spatio-Time-Resolved Cathodoluminescence Spectroscopy for Studying Local Carrier Dynamics in a Low Dislocation Density m-Plane In _{0.05} Ga _{0.95} N Epilayer Grown on a Freestanding GaN Substrate. Japanese Journal of Applied Physics, 2011, 50, 111002.	1.5	12
321	Self-Pulsation at Zero Absorber Bias in GaN-Based Multisection Laser Diodes. Applied Physics Express, 2011, 4, 062702.	2.4	12
322	Static and dynamic properties of multi-section InGaN-based laser diodes. Journal of Applied Physics, 2012, 112, .	2.5	12
323	Thermal stability and <i>in situ</i> SiN passivation of InAlN/GaN high electron mobility heterostructures. Applied Physics Letters, 2014, 105, .	3.3	12
324	Technology of integrated self-aligned E/D-mode n ⁺⁺ GaN/InAlN/AlN/GaN MOS HEMTs for mixed-signal electronics. Semiconductor Science and Technology, 2016, 31, 065011.	2.0	12

#	Article	IF	CITATIONS
325	Short cavity InGaN-based laser diodes with cavity length below 300 νm. Semiconductor Science and Technology, 2019, 34, 085005.	2.0	12
326	Optoelectronic characterization of blue InGaN/GaN LEDS grown by MBE. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 256-258.	3.5	11
327	Surface morphology of AlN and size dispersion of GaN quantum dots. Journal of Crystal Growth, 2005, 274, 387-393.	1.5	11
328	Effect of Anodic Oxidation on the Characteristics of Lattice-Matched AllnN/GaN Heterostructures. Journal of Electronic Materials, 2008, 37, 616-623.	2.2	11
329	In-Plane Polarities of Nonpolar Wurtzite Epitaxial Films Deposited on <i>m</i> and <i>r</i> plane Sapphire Substrates. Japanese Journal of Applied Physics, 2009, 48, 090211.	1.5	11
330	Metal-related gate sinking due to interfacial oxygen layer in Ir/InAlN high electron mobility transistors. Applied Physics Letters, 2010, 96, 263515.	3.3	11
331	Characterization of Plasma-Induced Damage of Selectively Recessed GaN/InAlN/AlN/GaN Heterostructures Using SiCl4and SF6. Japanese Journal of Applied Physics, 2010, 49, 116506.	1.5	11
332	$\langle i \rangle Q \langle i \rangle$ -factor of (In,Ga)N containing III-nitride microcavity grown by multiple deposition techniques. Journal of Applied Physics, 2013, 114, .	2.5	11
333	Low $\langle i \rangle p \langle i \rangle$ -type contact resistance by field-emission tunneling in highly Mg-doped GaN. Applied Physics Letters, 2016, 109, .	3.3	11
334	Effects of quantum-well indium content on deep defects and reliability of InGaN/GaN light-emitting diodes with under layer. Journal Physics D: Applied Physics, 2021, 54, 505108.	2.8	11
335	Growth of Thick GaN Layers by Hydride Vapor Phase Epitaxy on Sapphire Substrate with Internally Focused Laser Processing. Applied Physics Express, 2013, 6, 035502.	2.4	11
336	How to induce the epitaxial growth of gallium nitride on Si(001). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 29, 74-77.	3.5	10
337	Effects of Built-in Polarization Field on the Optical Properties of AlGaN/GaN Quantum Wells. Physica Status Solidi A, 1999, 176, 219-225.	1.7	10
338	Dielectric Microcavity in GaN/Si. Physica Status Solidi A, 2001, 183, 35-39.	1.7	10
339	Influence of GaN capping on performance of InAlN/AlN/GaN MOSâ€HEMT with Al ₂ O ₃ gate insulation grown by CVD. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1956-1958.	0.8	10
340	Pressure-induced piezoelectric effects in near-lattice-matched GaN/AlInN quantum wells. Journal of Applied Physics, 2008, 104, 063505.	2.5	10
341	InAlNâ [•] GaN metal-oxide-semiconductor high electron mobility transistor with Al[sub 2]O[sub 3] insulating films grown by metal organic chemical vapor deposition using Ar and NH[sub 3] carrier gases. Journal of Vacuum Science & Technology B, 2009, 27, 218.	1.3	10
342	Bias-dependent absorption coefficient of the absorber section in GaN-based multisection laser diodes. Applied Physics Letters, 2010, 97, 181103.	3.3	10

#	Article	IF	Citations
343	TEM and XANES study of MOVPE grown InAIN layers with different indium content. Journal of Physics: Conference Series, 2011, 326, 012013.	0.4	10
344	Thermal carrier emission and nonradiative recombinations in nonpolar (Al,Ga)N/GaN quantum wells grown on bulk GaN. Journal of Applied Physics, 2012, 111, 033517.	2.5	10
345	Capacitance behavior of InAlN Schottky diodes in presence of large concentrations of shallow and deep states related to oxygen. Journal of Applied Physics, 2015, 117, 185701.	2.5	10
346	Luminescence and Reflectivity of GaN/sapphire grown by MOVPE, GSMBE and HVPE. MRS Internet Journal of Nitride Semiconductor Research, 1996, 1, 1.	1.0	10
347	Photoreflectance spectroscopy as a powerful tool for the investigation of GaN–AlGaN quantum well structures. Solid State Communications, 1999, 109, 567-571.	1.9	9
348	Real-time control of the molecular beam epitaxy of nitrides. Journal of Crystal Growth, 1999, 201-202, 382-387.	1.5	9
349	Effect of the nucleation layer deposition temperature on the nature of defects in GSMBE GaN films. Journal of Crystal Growth, 1999, 201-202, 423-428.	1.5	9
350	Temperature Dependence of Photoluminescence Intensities of Undoped and Doped GaN. Physica Status Solidi (B): Basic Research, 1999, 216, 605-608.	1.5	9
351	Improved Radiative Efficiency using Self-Formed GalnN/GaN Quantum Dots Grown by Molecular Beam Epitaxy. Physica Status Solidi A, 2000, 180, 363-368.	1.7	9
352	MBE grown InGaN quantum dots and quantum wells: effects of in-plane localization. Thin Solid Films, 2000, 380, 195-197.	1.8	9
353	Dual Contribution to the Stokes Shift in InGaN-GaN Quantum Wells. Physica Status Solidi (B): Basic Research, 2001, 228, 111-114.	1.5	9
354	Optical bistability in InGaN-based multisection laser diodes. Applied Physics Letters, 2011, 98, .	3.3	9
355	Measurement of polarization-induced electric fields in GaN/AllnN quantum wells. Applied Physics Letters, 2012, 101, .	3.3	9
356	Large-kexciton dynamics in GaN epilayers: Nonthermal and thermal regimes. Physical Review B, 2013, 87,	3.2	9
357	Vacancy-type defects in Mg-doped GaN grown by ammonia-based molecular beam epitaxy probed using a monoenergetic positron beam. Journal of Applied Physics, 2016, 119, 245702.	2.5	9
358	Thin-Wall GaN/InAlN Multiple Quantum Well Tubes. Nano Letters, 2017, 17, 3347-3355.	9.1	9
359	Impact of surface morphology on the properties of light emission in InGaN epilayers. Applied Physics Express, 2018, 11, 051004.	2.4	9
360	Low-temperature growth of $\langle i\rangle n\langle i\rangle \langle sup\rangle + + \langle sup\rangle - GaN$ by metalorganic chemical vapor deposition to achieve low-resistivity tunnel junctions on blue light emitting diodes. Semiconductor Science and Technology, 2019, 34, 015002.	2.0	9

#	Article	IF	CITATIONS
361	Localization in highly strained In0.35Ga0.65As/GaAs ultrathin quantum wells. Superlattices and Microstructures, 1993, 14, 39.	3.1	8
362	Critical Thickness for Islanded Growth of Highly Strained I n $\langle sub \rangle x \langle sub \rangle G$ a $\langle sub \rangle 1 - x \langle sub \rangle A$ s on GaAs (001). Japanese Journal of Applied Physics, 1994, 33, L1427.	1.5	8
363	Monolayer thickness control of InxGa1â^'xAs/GaAs quantum wells grown by metalorganic molecular beam epitaxy. Applied Physics Letters, 1994, 64, 1523-1525.	3.3	8
364	Comparative optical characterization of GaN grown by metal-organic vapor phase epitaxy, gas source molecular beam epitaxy and halide vapor phase epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 43, 237-241.	3.5	8
365	Phonon Replica Dynamics in High Quality GaN Epilayers and AlGaN/GaN Quantum Wells. Physica Status Solidi A, 2001, 183, 129-134.	1.7	8
366	Two-dimensional "pseudo-donor–acceptor-pairs―model of recombination dynamics in InGaN/GaN quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 64-67.	2.7	8
367	Growth mode induced carrier localization in InGaN/GaN quantum wells. Philosophical Magazine, 2007, 87, 2067-2075.	1.6	8
368	Barrier layer downscaling of InAIN/GaN HEMTs. Device Research Conference, IEEE Annual, 2007, , .	0.0	8
369	Optically pumped long external cavity InGaN/GaN surface-emitting laser with injection seeding from a planar microcavity. Applied Physics Letters, 2012, 101, .	3.3	8
370	Investigation of InGaN/GaN quantum wells for polariton laser diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1325-1329.	0.8	8
371	Hybrid and Passive Mode-Locking of a Monolithic Two-Section MQW InGaN/GaN Laser Diode. IEEE Photonics Technology Letters, 2013, 25, 1514-1516.	2.5	8
372	Defect states characterization of non-annealed and annealed ZrO2/InAlN/GaN structures by capacitance measurements. Applied Physics Letters, 2013, 102 , .	3.3	8
373	Temperature-Dependence of Exciton Radiative Recombination in (Al,Ga)N/GaN Quantum Wells Grown ona-Plane GaN Substrates. Japanese Journal of Applied Physics, 2013, 52, 08JC01.	1.5	8
374	Selective heteroepitaxy on deeply grooved substrate: A route to low cost semipolar GaN platforms of bulk quality. Applied Physics Letters, 2016, 109, 082101.	3.3	8
375	Smooth GaN membranes by polarization-assisted electrochemical etching. Applied Physics Letters, 2021, 118, .	3.3	8
376	Solar blind AlGaN photodetectors with a very high spectral selectivity. EPJ Applied Physics, 2006, 33, 5-7.	0.7	7
377	AllnN/GaN a suitable HEMT device for extremely high power high frequency applications. , 2007, , .		7
378	Tailoring the strong coupling regime in Illâ€nitride based microcavities for room temperature polariton laser applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2820-2827.	0.8	7

#	Article	IF	CITATIONS
379	Solid-state lighting on glass. Nature Photonics, 2011, 5, 714-715.	31.4	7
380	Highâ€speed and lowâ€noise AllnN/GaN HEMTs on SiC. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 429-433.	1.8	7
381	Contactless electroreflectance of polar and nonpolar GaN/AlGaN quantum wells. Journal of Applied Physics, 2011, 109, .	2.5	7
382	AlN-Capped AlInN/GaN High Electron Mobility Transistors with 4.5 W/mm Output Power at 40 GHz. Japanese Journal of Applied Physics, 2013, 52, 08JN16.	1.5	7
383	Vectorial near-field imaging of a GaN based photonic crystal cavity. Applied Physics Letters, 2015, 107, .	3.3	7
384	InGaN laser diodes emitting at 500 nm with p-layers grown by molecular beam epitaxy. Applied Physics Express, 2015, 8, 022105.	2.4	7
385	Determining the nature of excitonic dephasing in high-quality GaN/AlGaN quantum wells through time-resolved and spectrally resolved four-wave mixing spectroscopy. Physical Review B, 2017, 96, .	3.2	7
386	Impact of Mode-Hopping Noise on InGaN Edge Emitting Laser Relative Intensity Noise Properties. IEEE Journal of Quantum Electronics, 2018, 54, 1-7.	1.9	7
387	Excited states of neutral donor bound excitons in GaN. Journal of Applied Physics, 2018, 123, .	2.5	7
388	Multi Phonon Resonant Raman Scattering in GaN/AlxGa1â€"xN Quantum Wells. Physica Status Solidi (B): Basic Research, 1999, 216, 799-802.	1.5	6
389	Resonant Raman scattering in (Al,Ga)N/GaN quantum well structures. Thin Solid Films, 2000, 364, 156-160.	1.8	6
390	Cw and time-resolved spectroscopy in homoepitaxial GaN films and GaN–GaAlN quantum wells grown by molecular beam epitaxy. Solid State Communications, 2001, 117, 445-448.	1.9	6
391	Recombination Dynamics in GaN/AlGaN Quantum Wells: The Role of Built-in Fields. Physica Status Solidi A, 2001, 188, 851-855.	1.7	6
392	Observation of magnetophotoluminescence from aGaN/AlxGa1â^'xNheterojunction. Physical Review B, 2002, 65, .	3.2	6
393	Intraband spectroscopy of self-organized GaN/AlN quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 60-63.	2.7	6
394	High-temperature annealing of AlGaN: Stress, structural, and compositional changes. Journal of Applied Physics, 2003, 94, 6366-6371.	2.5	6
395	Observation of localization effects in InGaN/GaN quantum structures by means of the application of hydrostatic pressure. Physica Status Solidi (B): Basic Research, 2004, 241, 3285-3292.	1.5	6
396	Strong electric field and nonuniformity effects in GaN∕AlN quantum dots revealed by high pressure studies. Applied Physics Letters, 2006, 89, 051902.	3.3	6

#	Article	IF	CITATIONS
397	Strain relaxation of AlN epilayers for Stranski–Krastanov GaN/AlN quantum dots grown by metal organic vapor phase epitaxy. Journal of Crystal Growth, 2007, 299, 254-258.	1.5	6
398	Temperature mapping of Al _{0.85} In _{0.15} N/AlN/GaN high electron mobility transistors through micro-photoluminescence studies. EPJ Applied Physics, 2009, 47, 30301.	0.7	6
399	Quantum confinement dependence of the energy splitting and recombination dynamics of A and B excitons in a GaN/AlGaN quantum well. Physical Review B, 2009, 79, .	3.2	6
400	LED light sources (light for the future). Journal Physics D: Applied Physics, 2010, 43, 350301.	2.8	6
401	Optimization of the ohmic contact processing in InAIN//GaN high electron mobility transistors for lower temperature of annealing. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 108-111.	0.8	6
402	Defects in a-GaN grown on r-sapphire by hydride vapor phase epitaxy. Journal of Crystal Growth, 2011, 327, 6-12.	1.5	6
403	GaN-based superluminescent diodes with long lifetime. Proceedings of SPIE, 2016, , .	0.8	6
404	Dark-level trapping, lateral confinement, and built-in electric field contributions to the carrier dynamics in <i>c</i> -plane GaN/AlN quantum dots emitting in the UV range. Journal of Applied Physics, 2021, 129, .	2.5	6
405	Terrace length commensurability and surface reconstruction in highly strained InGaAs/GaAs quantum wells grown on vicinal substrates. Superlattices and Microstructures, 1994, 15, 155.	3.1	5
406	Quantum-Confined Stark Effect and Recombination Dynamics of Spatially Indirect Excitons in MBE-Grown GaN-AlGaN Quantum Wells. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 375-380.	1.0	5
407	Temperature Dependence of Hexagonal-GaN Optical Properties below the Bandgap. Physica Status Solidi (B): Basic Research, 1999, 216, 73-77.	1.5	5
408	Optical properties of self-assembled InGaN/GaN quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 151-155.	3.5	5
409	Photoluminescence Excitation Spectroscopy of MBE Grown InGaN Quantum Wells and Quantum Boxes. Physica Status Solidi (B): Basic Research, 2001, 228, 129-132.	1.5	5
410	Large Built-in Electric Field and Its Influence on the Pressure Behavior of the Light Emission from GaN/AlGaN Strained Quantum Wells. Physica Status Solidi A, 2001, 188, 839-843.	1.7	5
411	Impact ionization of excitons in an electric field in GaN. Journal of Physics Condensed Matter, 2001, 13, 7043-7052.	1.8	5
412	Field distribution and collection efficiency in an AlGaN metal–semiconductor–metal detector. Journal of Applied Physics, 2002, 91, 6095-6098.	2.5	5
413	Steady-State and Time-Resolved Near-Field Optical Spectroscopy of GaN/AlN Quantum Dots and InGaN/GaN Quantum Wells. Physica Status Solidi A, 2002, 190, 155-160.	1.7	5
414	Resonant and Non-Resonant Dynamics of Excitons and Free Carriers in GaN/AlGaN Quantum Wells. Physica Status Solidi A, 2002, 190, 87-92.	1.7	5

#	Article	IF	CITATIONS
415	ABOVE 2 A/mm DRAIN CURRENT DENSITY OF GaN HEMTS GROWN ON SAPPHIRE. International Journal of High Speed Electronics and Systems, 2007, 17, 91-95.	0.7	5
416	Nitride-based heterostructures grown by MOCVD for near- and mid-infrared intersubband transitions. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1100-1104.	1.8	5
417	Growth of intersubband GaN/AlGaN heterostructures. Proceedings of SPIE, 2010, , .	0.8	5
418	Probing exciton density of states through phonon-assisted emission in GaN epilayers: <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>A</mml:mi></mml:math> and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> exciton contributions. Physical Review B, 2010, 82, .	3.2	5
419	Spin relaxation of free excitons in narrowGaN/AlxGa1â^'xNquantum wells. Physical Review B, 2010, 82, .	3.2	5
420	Timeâ€resolved cathodoluminescence on polychromatic light emitting (In,Ga)N quantum wells grown on (11â€22) GaN facets. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1394-1397.	0.8	5
421	Nonlinear emission properties of an optically anisotropic GaN-based microcavity. Physical Review B, 2012, 86, .	3.2	5
422	GaN on sapphire mesa technology. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 945-948.	0.8	5
423	ZrO2/InAlN/GaN Metal–Oxide–Semiconductor Heterostructure Field-Effect Transistors with InAlN Barrier of Different Compositions. Japanese Journal of Applied Physics, 2013, 52, 08JN07.	1.5	5
424	Far-field coupling in nanobeam photonic crystal cavities. Applied Physics Letters, 2016, 108, .	3. 3	5
425	Fermi-level pinning and intrinsic surface states of Al1â^'xlnxN(101 ¯') surfaces. Applied Physics Letters, 2017, 110, .	3.3	5
426	Light-emitting diode technology and applications: introduction. Photonics Research, 2017, 5, LED1.	7.0	5
427	Broadened Bandwidth Amplified Spontaneous Emission from Blue GaN-Based Short-Cavity Superluminescent Light-Emitting Diodes. ECS Journal of Solid State Science and Technology, 2020, 9, 015019.	1.8	5
428	Polariton relaxation and polariton nonlinearities in nonresonantly cw-pumped III-nitride slab waveguides. Physical Review B, 2020, 102, .	3.2	5
429	Indium segregation and misorientation effects on the optical properties of MBE grown In0.35Ga0.65As/GaAs quantum wells. European Physical Journal Special Topics, 1993, 03, C5-295-C5-298.	0.2	5
430	Spin orientation by optical pumping of strained In0.35Ga0.65As/GaAs quantum wells grown on vicinal substrates. Superlattices and Microstructures, 1993, 14, 117.	3.1	4
431	Photoluminescence properties of multiple stacked planes of GaN/AIN quantum dots studied by near-field optical microscopy. Journal of Microscopy, 2001, 202, 212-217.	1.8	4
432	InGaN/GaN quantum wells grown by molecular beam epitaxy emitting at 300 K in the whole visible spectrum. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 224-226.	3 . 5	4

#	Article	IF	Citations
433	Time-resolved spectroscopy of MBE-grown GaN/AlGaN hetero- and homo-epitaxial quantum wells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 140-142.	3.5	4
434	Photoconductance measurements and Stokes shift in InGaN alloys. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 197-199.	3.5	4
435	Near-Field Optical Spectroscopy of Multiple Stacked Planes of GaN/AlN Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 53-56.	1.5	4
436	Absorption and Emission of (In,Ga)N/GaN Quantum Wells Grown by Molecular Beam Epitaxy. Physica Status Solidi A, 2001, 183, 139-143.	1.7	4
437	Magneto-photoluminescence of AlGaN/GaN quantum wells. Journal of Crystal Growth, 2001, 230, 487-491.	1.5	4
438	UV Metal Semiconductor Metal Detectors. , 2004, , 77-92.		4
439	Au Free Ohmic Contacts for High Temperature InAlN/GaN HEMT's. ECS Transactions, 2009, 25, 33-36.	0.5	4
440	InAlN/GaN heterostructures for microwave power and beyond. , 2009, , .		4
441	Si-interdiffusion in heavily doped AlN-GaN-based quantum well intersubband photodetectors. Applied Physics Letters, 2011, 98, 241101.	3.3	4
442	In-depth analysis of injection-seeded long external cavity InGaN/GaN surface-emitting laser. Journal of Applied Physics, 2013, 113, .	2.5	4
443	Solitary pulse-on-demand production by optical injection locking of passively Q-switched InGaN diode laser near lasing threshold. Applied Physics Letters, 2015, 106, .	3.3	4
444	Photocapacitance spectroscopy of InAlN nearly lattice-matched to GaN. Applied Physics Letters, 2016, 109, .	3.3	4
445	Strain and compositional fluctuations in Al0.81In0.19N/GaN heterostructures. Applied Physics Letters, 2016, 109, 132102.	3.3	4
446	Multilayer porous structures on GaN for the fabrication of Bragg reflectors. Proceedings of SPIE, 2017, , .	0.8	4
447	Probing Alloy Formation Using Different Excitonic Species: The Particular Case of InGaN. Physical Review X, 2019, 9, .	8.9	4
448	Effects of 5 MeV electron irradiation on deep traps and electroluminescence from near-UV InGaN/GaN single quantum well light-emitting diodes with and without InAlN superlattice underlayer. Journal Physics D: Applied Physics, 2020, 53, 445111.	2.8	4
449	Deep traps in InGaN/GaN single quantum well structures grown with and without InGaN underlayers. Journal of Alloys and Compounds, 2020, 845, 156269.	5.5	4
450	High conductivity InAlN/GaN multi-channel two-dimensional electron gases. Semiconductor Science and Technology, 2021, 36, 055020.	2.0	4

#	Article	IF	Citations
451	Properties of InAlN layers nearly lattice-matched to GaN and their use for photonics and electronics., 2013,, 177-226.		4
452	Effect of the Nitridation of the Sapphire (0001) Substrate on the GaN Growth. Materials Research Society Symposia Proceedings, 1996, 449, 67.	0.1	3
453	Violet InGaN/GaN Light Emitting Diodes Grown by Molecular Beam Epitaxy Using NH3. Japanese Journal of Applied Physics, 1998, 37, L907-L909.	1.5	3
454	Growth Kinetics of GaN in Ammonia Atmosphere. Physica Status Solidi A, 1999, 176, 333-336.	1.7	3
455	Time-Resolved Spectroscopy of MBE-Grown Nitride Based Heterostructures. Physica Status Solidi A, 2000, 178, 101-105.	1.7	3
456	In K-edge extended X-ray absorption fine structure of InGaN epilayers and quantum boxes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 150-153.	3.5	3
457	RBS studies of AlGaN/AlN Bragg reflectors. Physica Status Solidi A, 2003, 195, 502-507.	1.7	3
458	Spectroscopy of the electron states in self-organized GaN/AlN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 1456-1460.	0.8	3
459	Strain and compositional analyses of Alâ€rich Al _{1–<i>x</i>} In _{<i>x</i>} N films grown by MOVPE: impact on the applicability of Vegard's rule. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1859-1862.	0.8	3
460	Suppression of leakage currents in GaN-based LEDs induced by reactive-ion etching damages. EPJ Applied Physics, 2008, 43, 51-53.	0.7	3
461	Optical and Structural Properties of an Eu Implanted Gallium Nitride Quantum Dots/Aluminium Nitride Superlattice. Journal of Nanoscience and Nanotechnology, 2010, 10, 2473-2478.	0.9	3
462	Peculiarities in the pressure dependence of photoluminescence in InAlN. Physica Status Solidi (B): Basic Research, 2013, 250, 677-682.	1.5	3
463	GaN superluminescent diodes and their applications. , 2016, , .		3
464	Quantification of roughness and spatial distribution of dislocations in MBE and MOVPE grown LED heterostructures. Materials Science in Semiconductor Processing, 2016, 55, 12-18.	4.0	3
465	Near-UV narrow bandwidth optical gain in lattice-matched III–nitride waveguides. Japanese Journal of Applied Physics, 2018, 57, 090305.	1.5	3
466	Molecular Beam Epitaxy of Group-III Nitrides on Silicon Substrates: Growth, Properties and Device Applications. Physica Status Solidi A, 2001, 188, 501-510.	1.7	3
467	Interplay of anomalous strain relaxation and minimization of polarization changes at nitride semiconductor heterointerfaces. Physical Review B, 2020, 102, .	3.2	3
468	<title>Lateral localization effects in strained InGaAs/GaAs semiconductor quantum wells grown on vicinal surfaces</title> ., 1994, 2139, 222.		2

#	Article	IF	Citations
469	Photoreflectance Spectroscopy Investigation of GaN-AlGaN Quantum Well Structures. Physica Status Solidi (B): Basic Research, 1999, 216, 221-225.	1.5	2
470	Thermal Stability of GaN Investigated by Raman Scattering. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 653-658.	1.0	2
471	High Magnetic Field Studies of AlGaN/GaN Heterostructures Grown on Bulk GaN, SiC, and Sapphire Substrates. Materials Research Society Symposia Proceedings, 2000, 639, 731.	0.1	2
472	Growth of gallium nitride epitaxial layers and applications. Comptes Rendus Physique, 2000, 1, 35-49.	0.1	2
473	Confined exciton-polariton modes in a thin, homo-epitaxial, GaN film grown by molecular beam epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 173-177.	3.5	2
474	Potentialities of GaN-Based Microcavities Grown on Silicon Substrates. Physica Status Solidi A, 2001, 188, 519-522.	1.7	2
475	Electric-field-induced impact ionization of excitons in GaN and GaN/AlGaN quantum wells. Physics of the Solid State, 2001, 43, 2321-2327.	0.6	2
476	Contribution to quantitative measurement of the In composition in GaN/InGaN multilayers. Materials Chemistry and Physics, 2003, 81, 273-276.	4.0	2
477	Microcavity Light Emitting Diodes Based on GaN membranes Grown by Molecular Beam Epitaxy on Silicon. Japanese Journal of Applied Physics, 2003, 42, 118-121.	1.5	2
478	Thermal stability of 5 nm barrier InAlN/GaN HEMTs. , 2007, , .		2
479	Measurement of the tuneable absorption in GaNâ€based multiâ€section laser diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2345-2347.	0.8	2
480	Buffer-Related Degradation Aspects of Single and Double-Heterostructure Quantum Well InAlN/GaN High-Electron-Mobility Transistors. Japanese Journal of Applied Physics, 2012, 51, 054102.	1.5	2
481	Low loss EEL spectroscopy performed on In _x Al _{1â€x} N layers grown by MOVPE: comparison between experiment and abâ€initio calculations. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 989-992.	0.8	2
482	Interplay of intrinsic and extrinsic states in pinning and passivation of <i>m</i> -ci>p-ci>p-ci>n-ci>p-ci>n<-n<-n<-n<-n<-n<-n<-n<-n<-n<-n<-n<-n<-n	2.5	2
483	Solar Blind (Al,Ga)N Metal-Semiconductor-Metal Devices for High Performance Flame Detection. Materials Research Society Symposia Proceedings, 2003, 764, $\hat{1}$.	0.1	2
484	Si and Mg Doped Gan Layers Grown by Gas Source Molecular Beam Epitaxy Using Ammonia. Materials Research Society Symposia Proceedings, 1997, 482, 295.	0.1	1
485	Optical and Structural Properties of AlGaN/GaN Quantum Wells Grown by Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	1
486	Quantum-Confined Stark Effect and Recombination Dynamics of Spatially Indirect Excitons in Mbe-Grown GaN-AlGaN Quantum Wells. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	1

#	Article	IF	CITATIONS
487	GaN/GalnN-based light emitting diodes grown by molecular beam epitaxy using NH3. Journal of Crystal Growth, 1999, 201-202, 323-326.	1.5	1
488	Recombination Dynamics in Nitride Quantum Boxes and Quantum Wells for Colors Ranging from the UV to the Red. Materials Research Society Symposia Proceedings, 2000, 639, 1011.	0.1	1
489	Group-III Nitride Quantum Heterostructures Emitting in the whole Visible Range. Materials Research Society Symposia Proceedings, 2000, 639, 1211.	0.1	1
490	Universal behavior of the pressure coefficient of the light absorption and emission in InGaN structures. Materials Research Society Symposia Proceedings, 2000, 639, 981.	0.1	1
491	Modelling of absorption and emission spectra of InxGa1â^'xN layers grown by MBE. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 71-73.	3.5	1
492	Microscopic Description of Radiative Recombinations in InGaN/GaN Quantum Systems. Materials Research Society Symposia Proceedings, 2002, 743, L5.5.1.	0.1	1
493	Cathodoluminescence study of the excitons localization in AlGaN/GaN and InGaN/GaN quantum wells grown on sapphire. Journal of Crystal Growth, 2003, 247, 284-290.	1.5	1
494	Optical properties of GaN/AlN quantum boxes under high photo-excitation. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2666-2669.	0.8	1
495	AlGaN/GaN HEMTs on Resistive Si(111) Substrate: From Material Assessment to RF Power Performances. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 61-64.	0.8	1
496	High Performance Solar Blind Detectors based on AlGaN grown by MBE and MOCVD. Materials Research Society Symposia Proceedings, 2003, 798, 307.	0.1	1
497	Nontrivial carrier recombination dynamics and optical properties of over-excited GaN/AlN quantum dots. Physica Status Solidi (B): Basic Research, 2004, 241, 2779-2782.	1.5	1
498	Optical detection of 2DEG in GaN/AlGaN structures - High magnetic field studies. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 193-197.	0.8	1
499	Micro-photoluminescence of GaN quantum dots embedded in 100 nm wide cylindrical AlN pillars. Superlattices and Microstructures, 2004, 36, 783-790.	3.1	1
500	Radiative lifetime in wurtzite GaN/AlN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 183-186.	0.8	1
501	Biexciton recombination in high quality GaN/AlGaN quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2254-2256.	0.8	1
502	Effects of the annealing temperature on the structural and electronic properties of MBE grown InGaN/GaN quantum wells. Journal of Physics: Conference Series, 2011, 326, 012012.	0.4	1
503	Early stage degradation of InAIN/GaN HEMTs during electrical stress. , 2012, , .		1
504	Interaction between meta-materials and shallow donors in bulk GaN at THz frequency. Optics Express, 2014, 22, 3199.	3.4	1

#	Article	IF	CITATIONS
505	Triggering of guiding and antiguiding effects in GaN-based VCSELs., 2014, , .		1
506	GaN L3 Photonic Crystal Cavities With an Average Quality Factor in Excess of $16000\mathrm{in}$ the Near Infrared. , $2015,$, .		1
507	High p-type GaN for advanced optoelectronic devices. , 2016, , .		1
508	Assessing the Composition of Wide Bandgap Compound Semiconductors by Atom Probe Tomography: A Metrological Problem. Microscopy and Microanalysis, 2016, 22, 650-651.	0.4	1
509	Optical properties of nearly lattice-matched GaN/(Al,In)N quantum wells. Journal of Applied Physics, 2016, 119, 205708.	2.5	1
510	Scale Effects on Exciton Localization and Nonradiative Processes in GaN/AlGaN Quantum Wells. , 2000, 180, 127.		1
511	Reduction of Carrier In-Plane Mobility in Group-III Nitride Based Quantum Wells: The Role of Internal Electric Fields., 2001, 183, 61.		1
512	Molecular Beam Epitaxy of Group-III Nitrides on Silicon Substrates: Growth, Properties and Device Applications., 2001, 188, 501.		1
513	The Effects of Localization and of Electric Fields on LO-Phonon–Exciton Coupling in InGaN/GaN Quantum Wells and Quantum Boxes. , 2002, 190, 149.		1
514	The Role of Internal Electric Fields in III-N Quantum Structure. Acta Physica Polonica A, 2001, 100, 261-270.	0.5	1
515	Localization Effects in GaN/AlGaN Quantum Well - Photoluminescence Studies. Acta Physica Polonica A, 2003, 103, 573-578.	0.5	1
516	Growth of ultra-thin AlAs layers on GaAs (001) vicinal surfaces: a search for lateral confinement. Journal of Crystal Growth, 1993, 127, 831-835.	1.5	0
517	Optical pumping in In0.35Ga0.65As/GaAs heterostructures obtained by molecular beam epitaxy at 400°C. Superlattices and Microstructures, 1995, 18, 105-112.	3.1	0
518	Rutherford backscattering spectrometry, particle induced X-ray emission and atomic force microscopy of InAs thin films grown on GaAs: a complementary study. Thin Solid Films, 1996, 278, 155-165.	1.8	0
519	Effects of segregation on the optical properties of (In,Ga)As/GaAs quantum wells grown by MBE under various conditions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 44, 151-154.	3.5	0
520	Phonons and Holes in Magnesium Doped GaN. Materials Research Society Symposia Proceedings, 1998, 512, 333.	0.1	0
521	Effect of V/III Ratio on the Properties of GaN Layers Grown by Molecular Beam Epitaxy Using NH3. Materials Research Society Symposia Proceedings, 1998, 512, 69.	0.1	0
522	Molecular Beam Epitaxy of High Quality InGaN Alloys Using Ammonia: Optical and Structural Properties. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	0

#	Article	IF	Citations
523	Thermal Stability of GaN Investigated by Raman Scattering. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	0
524	Optical and Structural Properties of AlGaN/GaN Quantum Wells Grown by Molecular Beam Epitaxy. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 962-967.	1.0	0
525	Molecular Beam Epitaxy of High Quality InGaN Alloys Using Ammonia: Optical and Structural Properties. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 333-338.	1.0	0
526	Impact Ionization of Excitons in an Electric Field in GaN. Physica Status Solidi (B): Basic Research, 1999, 216, 63-67.	1.5	0
527	Piezoelectric Field and its Influence on the Pressure Behavior of the Light Emission from InGaN/GaN and GaN/AlGaN Quantum Wells. Materials Research Society Symposia Proceedings, 2001, 693, 728.	0.1	0
528	Occurrence of †Accidental†inn Quantum Dots in Indium Gallium Nitride/Gallium Nitride Heterostructures. Materials Research Society Symposia Proceedings, 2002, 737, 195.	0.1	0
529	Indium distribution inside quantum wells: The effect of growth interruption in MBE. Materials Research Society Symposia Proceedings, 2002, 743, L6.6.1.	0.1	0
530	Exciton Oscillator Strength in GaN/AlGaN Quantum Wells. Physica Status Solidi A, 2002, 190, 129-133.	1.7	0
531	Residual donors in wurtzite GaN homoepitaxial layers and heterostructures. Physica Status Solidi (B): Basic Research, 2003, 235, 20-25.	1.5	0
532	Spectroscopy of Intraband Electron Confinement in Self-Assembled GaN/AlN Quantum Dots. Materials Research Society Symposia Proceedings, 2003, 798, 575.	0.1	0
533	Progresses in III-Nitride Distributed Bragg Reflectors and Microcavities Using AllnN/GaN Materials. , 0, , 261-286.		0
534	Modification of InGaN Quantum Well Luminescence by Microstructured Buffer Layers. AIP Conference Proceedings, 2007, , .	0.4	0
535	Room temperature polariton lasing and BEC in semiconductor microcavities. , 2008, , .		0
536	GaN-based laser diodes including a lattice-matched Al0.83In0.17N cladding layer., 2009,,.		0
537	Mapping Polarization Fields in Al0.85In0.15N/AlN/GaN Heterostructures. Microscopy and Microanalysis, 2009, 15, 1048-1049.	0.4	0
538	Stress Modulated Composition Fluctuation and Diffusion in near lattice match AllnN/GaN. Microscopy and Microanalysis, 2009, 15, 1020-1021.	0.4	0
539	Role of the gate-to-drain distance in the performance of the normally-off InAlN/GaN HEMTs. , 2010, , .		0
540	Improvements of High Performance 2-nm-thin InAlNâ^•AlN Barrier Devices by Interface Engineering. , 2011, , .		0

#	Article	IF	CITATIONS
541	Polariton lasers., 2012,,.		0
542	III-nitride intersubband photonics. Proceedings of SPIE, 2012, , .	0.8	0
543	Solitary Pulse-on-Demand Production by Optical Injection Locking of Passively Q-Switched InGaN Diode Lasers Near Lasing Threshold. , 2014, , .		0
544	Efficient harmonic generation in high-Q gallium nitride photonic crystal cavities on silicon. , 2017, , .		0
545	Narrow Linewidth InGaN Laser Diodes Based on External Cavity Fiber Bragg Grating. , 2019, , .		0
546	Réalisation de structures photoniques avancées. European Physical Journal Special Topics, 2000, 10, Pr8-125.	0.2	0
547	Towards room temperature electrically pumped blue vertical cavity surface emitting lasers., 2009,,.		0
548	Implementation of Spatio-Time-Resolved Cathodoluminescence Spectroscopy for Studying Local Carrier Dynamics in a Low Dislocation Densitym-Plane In0.05Ga0.95N Epilayer Grown on a Freestanding GaN Substrate. Japanese Journal of Applied Physics, 2011, 50, 111002.	1.5	0
549	Toward Quantum Fluids at Room Temperature: Polariton Condensation in III-Nitride Based Microcavities. Springer Series in Solid-state Sciences, 2013, , 201-230.	0.3	0
550	Polariton Lasing at Room Temperature. , 2013, , .		0
551	Optical pumping in strained In _{0.2} Ga _{0.8} As/GaAs quantum wells. European Physical Journal Special Topics, 1993, 03, 319-322.	0.2	0
552	Room Temperature Continuous Wave Blue Lasing in High Quality Factor III-Nitride Nanobeam Cavity on Silicon. , 2015, , .		0
553	Fabrication defects and grating couplers in III-nitride photonic crystal nanobeam lasers (Conference) Tj ETQq $1\ 1$	0.784314	rgBT /Overlo
554	Vacuum-field Rabi Splitting at SWIR in Photocurrent of Quantum Cascade Infrared Photodetectors Coupled to Metamaterial Nano-antennas., 2017,,.		0
555	In distribution in InGaN quantum wells: influence of phase separation, In segregation and In desorption. , 2018, , 285-288.		0
556	Doubly Resonant Second Harmonic Generation in Photonic Crystal Cavities via Bound States in the Continuum., 2020, , .		0
557	Efficient second harmonic generation in a doubly resonant photonic crystal cavity based on a bound state in the continuum. , 2020, , .		0
558	Defects in III-N LEDs: experimental identification and impact on electro-optical characteristics. , 2022, , .		0

ARTICLE IF CITATIONS

559 Deep defects in InGaN LEDs: modeling the impact on the electrical characteristics., 2022,,... o