Peter Zeidman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8909443/publications.pdf

Version: 2024-02-01

34 papers 2,445 citations

394421 19 h-index 395702 33 g-index

37 all docs

 $\begin{array}{c} 37 \\ \text{docs citations} \end{array}$

37 times ranked

3148 citing authors

#	Article	lF	CITATIONS
1	Directed coupling in multi-brain networks underlies generalized synchrony during social exchange. Neurolmage, 2022, 252, 119038.	4.2	10
2	Difficulties with Speech-in-Noise Perception Related to Fundamental Grouping Processes in Auditory Cortex. Cerebral Cortex, 2021, 31, 1582-1596.	2.9	21
3	Representation of Contralateral Visual Space in the Human Hippocampus. Journal of Neuroscience, 2021, 41, 2382-2392.	3.6	17
4	Characterising the hippocampal response to perception, construction and complexity. Cortex, 2021, 137, 1-17.	2.4	18
5	Dynamic causal modelling of immune heterogeneity. Scientific Reports, 2021, 11, 11400.	3.3	3
6	Spectral dynamic causal modelling in healthy women reveals brain connectivity changes along the menstrual cycle. Communications Biology, 2021, 4, 954.	4.4	20
7	Adiabatic dynamic causal modelling. NeuroImage, 2021, 238, 118243.	4.2	16
8	Brain circuits signaling the absence of emotion in body language. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20868-20873.	7.1	23
9	Asymmetric high-order anatomical brain connectivity sculpts effective connectivity. Network Neuroscience, 2020, 4, 871-890.	2.6	9
10	Bayesian fusion and multimodal DCM for EEG and fMRI. NeuroImage, 2020, 211, 116595.	4.2	30
11	Second waves, social distancing, and the spread of COVID-19 across the USA. Wellcome Open Research, 2020, 5, 103.	1.8	20
12	Dynamic causal modelling of COVID-19. Wellcome Open Research, 2020, 5, 89.	1.8	32
13	Variational representational similarity analysis. Neurolmage, 2019, 201, 115986.	4.2	13
14	Structure learning in coupled dynamical systems and dynamic causal modelling. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190048.	3.4	17
15	A guide to group effective connectivity analysis, part 2: Second level analysis with PEB. NeuroImage, 2019, 200, 12-25.	4.2	267
16	Using resting-state DMN effective connectivity to characterize the neurofunctional architecture of empathy. Scientific Reports, 2019, 9, 2603.	3.3	26
17	There's no such thing as a â€~true' model: the challenge of assessing face validity*. , 2019, , .		8
18	Linking structural and effective brain connectivity: structurally informed Parametric Empirical Bayes (si-PEB). Brain Structure and Function, 2019, 224, 205-217.	2.3	36

#	Article	IF	CITATIONS
19	The Hierarchical Organization of the Default, Dorsal Attention and Salience Networks in Adolescents and Young Adults. Cerebral Cortex, 2018, 28, 726-737.	2.9	144
20	Structural and effective brain connectivity underlying biological motion detection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12034-E12042.	7.1	70
21	Differentiable Processing of Objects, Associations, and Scenes within the Hippocampus. Journal of Neuroscience, 2018, 38, 8146-8159.	3.6	60
22	Optimizing Data for Modeling Neuronal Responses. Frontiers in Neuroscience, 2018, 12, 986.	2.8	11
23	Segmenting subregions of the human hippocampus on structural magnetic resonance image scans: An illustrated tutorial. Brain and Neuroscience Advances, 2017, 1, 239821281770144.	3.4	56
24	Efficacy of navigation may be influenced by retrosplenial cortex-mediated learning of landmark stability. Neuropsychologia, 2017, 104, 102-112.	1.6	23
25	Dynamic causal modeling in PTSD and its dissociative subtype: Bottom–up versus top–down processing within fear and emotion regulation circuitry. Human Brain Mapping, 2017, 38, 5551-5561.	3.6	108
26	Functional Sensitivity of 2D Simultaneous Multi-Slice Echo-Planar Imaging: Effects of Acceleration on g-factor and Physiological Noise. Frontiers in Neuroscience, 2017, 11, 158.	2.8	45
27	Bayesian model reduction and empirical Bayes for group (DCM) studies. Neurolmage, 2016, 128, 413-431.	4.2	475
28	Anterior hippocampus: the anatomy of perception, imagination and episodic memory. Nature Reviews Neuroscience, 2016, 17, 173-182.	10.2	411
29	Empirical Bayes for Group (DCM) Studies: A Reproducibility Study. Frontiers in Human Neuroscience, 2015, 9, 670.	2.0	41
30	Constructing, Perceiving, and Maintaining Scenes: Hippocampal Activity and Connectivity. Cerebral Cortex, 2015, 25, 3836-3855.	2.9	153
31	Investigating the functions of subregions within anterior hippocampus. Cortex, 2015, 73, 240-256.	2.4	89
32	Proactive and Reactive Response Inhibition across the Lifespan. PLoS ONE, 2015, 10, e0140383.	2.5	58
33	A central role for the retrosplenial cortex in de novo environmental learning. ELife, 2015, 4, .	6.0	66
34	Exploring the parahippocampal cortex response to high and low spatial frequency spaces. NeuroReport, 2012, 23, 503-507.	1.2	38