Chris I Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/890934/publications.pdf

Version: 2024-02-01

44069 27406 13,509 111 48 106 citations h-index g-index papers 167 167 167 13635 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience, 2009, 12, 535-540.	14.8	2,379
2	A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 2011, 12, 217-230.	10.2	1,080
3	Scanning the horizon: towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 2017, 18, 115-126.	10.2	1,041
4	The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends in Cognitive Sciences, 2013, 17, 26-49.	7.8	921
5	Separate Face and Body Selectivity on the Fusiform Gyrus. Journal of Neuroscience, 2005, 25, 11055-11059.	3.6	455
6	Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9087-9092.	7.1	325
7	Integration of Visual and Auditory Information by Superior Temporal Sulcus Neurons Responsive to the Sight of Actions. Journal of Cognitive Neuroscience, 2005, 17, 377-391.	2.3	294
8	Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nature Neuroscience, 2002, 5, 1210-1216.	14.8	274
9	Neural Representation for the Perception of the Intentionality of Actions. Brain and Cognition, 2000, 44, 280-302.	1.8	269
10	Real-World Scene Representations in High-Level Visual Cortex: It's the Spaces More Than the Places. Journal of Neuroscience, 2011, 31, 7322-7333.	3.6	257
11	Gaze following and joint attention in rhesus monkeys (Macaca mulatta) Journal of Comparative Psychology (Washington, D C: 1983), 1997, 111, 286-293.	0.5	242
12	Reorganization of Visual Processing in Macular Degeneration. Journal of Neuroscience, 2005, 25, 614-618.	3.6	239
13	Discrimination Training Alters Object Representations in Human Extrastriate Cortex. Journal of Neuroscience, 2006, 26, 13025-13036.	3.6	221
14	Deconstructing multivariate decoding for the study of brain function. Neurolmage, 2018, 180, 4-18.	4.2	214
15	Disentangling visual imagery and perception of real-world objects. NeuroImage, 2012, 59, 4064-4073.	4.2	198
16	Teaching an adult brain new tricks: A critical review of evidence for training-dependent structural plasticity in humans. Neurolmage, 2013, 73, 225-236.	4.2	187
17	Scene Perception in the Human Brain. Annual Review of Vision Science, 2019, 5, 373-397.	4.4	173
18	Feedback of visual object information to foveal retinotopic cortex. Nature Neuroscience, 2008, 11, 1439-1445.	14.8	172

#	Article	IF	CITATIONS
19	Goal-dependent dissociation of visual and prefrontal cortices during working memory. Nature Neuroscience, 2013, 16, 997-999.	14.8	169
20	Contributions of low- and high-level properties to neural processing of visual scenes in the human brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160102.	4.0	160
21	High-Level Visual Object Representations Are Constrained by Position. Cerebral Cortex, 2010, 20, 2916-2925.	2.9	155
22	Task context impacts visual object processing differentially across the cortex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E962-71.	7.1	140
23	Role of Attention and Perceptual Grouping in Visual Statistical Learning. Psychological Science, 2004, 15, 460-466.	3.3	139
24	A Retinotopic Basis for the Division of High-Level Scene Processing between Lateral and Ventral Human Occipitotemporal Cortex. Journal of Neuroscience, 2015, 35, 11921-11935.	3.6	134
25	Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior. ELife, 2018, 7, .	6.0	132
26	Deconstructing Visual Scenes in Cortex: Gradients of Object and Spatial Layout Information. Cerebral Cortex, 2013, 23, 947-957.	2.9	128
27	Slower Rate of Binocular Rivalry in Autism. Journal of Neuroscience, 2013, 33, 16983-16991.	3.6	122
28	The representational dynamics of task and object processing in humans. ELife, 2018, 7, .	6.0	121
29	Reorganization of visual processing in macular degeneration: Replication and clues about the role of foveal loss. Vision Research, 2008, 48, 1910-1919.	1.4	117
30	Revealing the multidimensional mental representations of natural objects underlying human similarity judgements. Nature Human Behaviour, 2020, 4, 1173-1185.	12.0	113
31	How position dependent is visual object recognition?. Trends in Cognitive Sciences, 2008, 12, 114-122.	7.8	102
32	Making Sense of Real-World Scenes. Trends in Cognitive Sciences, 2016, 20, 843-856.	7.8	102
33	Reorganization of Visual Processing in Macular Degeneration Is Not Specific to the "Preferred Retinal Locus― Journal of Neuroscience, 2009, 29, 2768-2773.	3. 6	101
34	Global motion perception deficits in autism are reflected as early as primary visual cortex. Brain, 2014, 137, 2588-2599.	7.6	101
35	Cortical representations of bodies and faces are strongest in commonly experienced configurations. Nature Neuroscience, 2010, 13, 417-418.	14.8	97
36	THINGS: A database of 1,854 object concepts and more than 26,000 naturalistic object images. PLoS ONE, 2019, 14, e0223792.	2.5	97

#	Article	IF	CITATIONS
37	The neural basis of visual object learning. Trends in Cognitive Sciences, 2010, 14, 22-30.	7.8	95
38	Impact of time-of-day on brain morphometric measures derived from T1-weighted magnetic resonance imaging. Neurolmage, 2016, 133, 41-52.	4.2	95
39	Tunnel Vision: Sharper Gradient of Spatial Attention in Autism. Journal of Neuroscience, 2013, 33, 6776-6781.	3.6	89
40	Faces in the eye of the beholder: Unique and stable eye scanning patterns of individual observers. Journal of Vision, 2014, 14, 6.	0.3	85
41	Distinct subdivisions of human medial parietal cortex support recollection of people and places. ELife, 2019, 8, .	6.0	79
42	Scene-Selectivity and Retinotopy in Medial Parietal Cortex. Frontiers in Human Neuroscience, 2016, 10, 412.	2.0	78
43	Rapid and dynamic processing of face pareidolia in the human brain. Nature Communications, 2020, 11, 4518.	12.8	69
44	Start Position Strongly Influences Fixation Patterns during Face Processing: Difficulties with Eye Movements as a Measure of Information Use. PLoS ONE, 2012, 7, e31106.	2.5	65
45	Drawings of real-world scenes during free recall reveal detailed object and spatial information in memory. Nature Communications, 2019, 10, 5.	12.8	62
46	Neuronal representation of disappearing and hidden objects in temporal cortex of the macaque. Experimental Brain Research, 2001, 140, 375-381.	1.5	61
47	Does the fusiform face area contain subregions highly selective for nonfaces?. Nature Neuroscience, 2007, 10, 3-4.	14.8	60
48	Quantifying aphantasia through drawing: Those without visual imagery show deficits in object but not spatial memory. Cortex, 2021, 135, 159-172.	2.4	59
49	Bayesian population receptive field modelling. Neurolmage, 2018, 180, 173-187.	4.2	56
50	Atypical Integration of Motion Signals in Autism Spectrum Conditions. PLoS ONE, 2012, 7, e48173.	2.5	56
51	The Temporal Dynamics of Scene Processing: A Multifaceted EEG Investigation. ENeuro, 2016, 3, ENEURO.0139-16.2016.	1.9	54
52	Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory. Frontiers in Systems Neuroscience, $2016,10,2.$	2.5	52
53	Plasticity of the human visual system after retinal gene therapy in patients with Leber's congenital amaurosis. Science Translational Medicine, 2015, 7, 296ra110.	12.4	51
54	Impact of time-of-day on diffusivity measures of brain tissue derived from diffusion tensor imaging. NeuroImage, 2018, 173, 25-34.	4.2	48

#	Article	IF	CITATION
55	A Posterior–Anterior Distinction between Scene Perception and Scene Construction in Human Medial Parietal Cortex. Journal of Neuroscience, 2019, 39, 705-717.	3.6	48
56	Beyond perceptual expertise: revisiting the neural substrates of expert object recognition. Frontiers in Human Neuroscience, 2013, 7, 885.	2.0	47
57	The impact of reward and punishment on skill learning depends on task demands. Scientific Reports, 2016, 6, 36056.	3.3	46
58	Seeing Is Not Feeling: Posterior Parietal But Not Somatosensory Cortex Engagement During Touch Observation. Journal of Neuroscience, 2015, 35, 1468-1480.	3.6	45
59	Evaluating the correspondence between face-, scene-, and object-selectivity and retinotopic organization within lateral occipitotemporal cortex. Journal of Vision, 2016, 16, 14.	0.3	45
60	Toward a New Model of Scientific Publishing: Discussion and a Proposal. Frontiers in Computational Neuroscience, 2011, 5, 55.	2.1	43
61	Similarity judgments and cortical visual responses reflect different properties of object and scene categories in naturalistic images. Neurolmage, 2019, 197, 368-382.	4.2	43
62	Differential Sampling of Visual Space in Ventral and Dorsal Early Visual Cortex. Journal of Neuroscience, 2018, 38, 2294-2303.	3.6	42
63	Memorability of words in arbitrary verbal associations modulates memory retrieval in the anterior temporal lobe. Nature Human Behaviour, 2020, 4, 937-948.	12.0	42
64	Distinct Representational Structure and Localization for Visual Encoding and Recall during Visual Imagery. Cerebral Cortex, 2021, 31, 1898-1913.	2.9	40
65	The categories, frequencies, and stability of idiosyncratic eye-movement patterns to faces. Vision Research, 2017, 141, 191-203.	1.4	36
66	Diffusion MRI properties of the human uncinate fasciculus correlate with the ability to learn visual associations. Cortex, 2015, 72, 65-78.	2.4	31
67	Differential Representations of Perceived and Retrieved Visual Information in Hippocampus and Cortex. Cerebral Cortex, 2019, 29, 4452-4461.	2.9	28
68	Boundaries Extend and Contract in Scene Memory Depending on Image Properties. Current Biology, 2020, 30, 537-543.e3.	3.9	28
69	The Human Posterior Superior Temporal Sulcus Samples Visual Space Differently From Other Face-Selective Regions. Cerebral Cortex, 2020, 30, 778-785.	2.9	26
70	Privileged Coding of Convex Shapes in Human Object-Selective Cortex. Journal of Neurophysiology, 2008, 100, 753-762.	1.8	25
71	Impaired fixation to eyes during facial emotion labelling in children with bipolar disorder or severe mood dysregulation. Journal of Psychiatry and Neuroscience, 2013, 38, 407-416.	2.4	25
72	Influence of lexical status and orthographic similarity on the multi-voxel response of the visual word form area. NeuroImage, 2015, 111, 321-328.	4.2	24

#	Article	IF	CITATIONS
73	Trajectory of phantom limb pain relief using mirror therapy: Retrospective analysis of two studies. Scandinavian Journal of Pain, 2017, 15, 98-103.	1.3	24
74	Statistical power comparisons at 3T and 7T with a GO / NOGO task. NeuroImage, 2018, 175, 100-110.	4.2	24
75	Differences in Looking at Own- and Other-Race Faces Are Subtle and Analysis-Dependent: An Account of Discrepant Reports. PLoS ONE, 2016, 11, e0148253.	2.5	24
76	"Referred Visual Sensations": Rapid Perceptual Elongation after Visual Cortical Deprivation. Journal of Neuroscience, 2009, 29, 8960-8964.	3.6	23
77	Illusory faces are more likely to be perceived as male than female. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	23
78	Making sense of phantom limb pain. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 833-843.	1.9	21
79	Memorability of photographs in subjective cognitive decline and mild cognitive impairment: Implications for cognitive assessment. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11 , 610 - 618 .	2.4	17
80	Representation of Contralateral Visual Space in the Human Hippocampus. Journal of Neuroscience, 2021, 41, 2382-2392.	3.6	17
81	On evidence, biases and confounding factors: Response to commentaries. Neurolmage, 2013, 73, 265-267.	4.2	16
82	Expert Tool Users Show Increased Differentiation between Visual Representations of Hands and Tools. Journal of Neuroscience, 2021, 41, 2980-2989.	3.6	16
83	Comparing Clinical Perimetry and Population Receptive Field Measures in Patients with Choroideremia., 2018, 59, 3249.		15
84	Visual responsiveness in sensorimotor cortex is increased following amputation and reduced after mirror therapy. Neurolmage: Clinical, 2019, 23, 101882.	2.7	14
85	Recent advances in understanding object recognition in the human brain: deep neural networks, temporal dynamics, and context. F1000Research, 2020, 9, 590.	1.6	14
86	Remodeling human cortex through training: comment on May. Trends in Cognitive Sciences, 2012, 16, 96-97.	7.8	12
87	Finding the baby in the bath water – evidence for task-specific changes in resting state functional connectivity evoked by training. Neurolmage, 2019, 188, 524-538.	4.2	12
88	Theta-burst TMS of lateral occipital cortex reduces BOLD responses across category-selective areas in ventral temporal cortex. Neurolmage, 2021, 230, 117790.	4.2	12
89	Differential impact of reward and punishment on functional connectivity after skill learning. Neurolmage, 2019, 189, 95-105.	4.2	11
90	Informativeness and learning: Response to Gauthier and colleagues. Trends in Cognitive Sciences, 2010, 14, 236-237.	7.8	8

#	Article	IF	Citations
91	Characteristic visuomotor influences on eye-movement patterns to faces and other high level stimuli. Frontiers in Psychology, 2015, 6, 1027.	2.1	8
92	Multiple Adjoining Word- and Face-Selective Regions in Ventral Temporal Cortex Exhibit Distinct Dynamics. Journal of Neuroscience, 2021, 41, 6314-6327.	3.6	8
93	Differential contributions of occipitotemporal regions to person perception. Cognitive Neuroscience, 2011, 2, 210-211.	1.4	7
94	New advances in encoding and decoding of brain signals. NeuroImage, 2018, 180, 1-3.	4.2	6
95	Resolving visual motion through perceptual gaps. Trends in Cognitive Sciences, 2021, 25, 978-991.	7.8	6
96	Direct comparison of contralateral bias and face/scene selectivity in human occipitotemporal cortex. Brain Structure and Function, 2022, 227, 1405-1421.	2.3	6
97	An Empirically Driven Guide on Using Bayes Factors for M/EEG Decoding. , 2022, 2022, .		6
98	Reply to Intraub. Current Biology, 2020, 30, R1465-R1466.	3.9	5
99	Disrupted object-scene semantics boost scene recall but diminish object recall in drawings from memory. Memory and Cognition, 2021, 49, 1568-1582.	1.6	5
100	Highly similar and competing visual scenes lead to diminished object but not spatial detail in memory drawings. Memory, 2022, 30, 279-292.	1.7	5
101	Face to face with cortex. Nature Neuroscience, 2008, 11, 862-864.	14.8	4
102	Holding a stick at both ends: on faces and expertise. Frontiers in Human Neuroscience, 2014, 8, 442.	2.0	4
103	Transcranial Magnetic Stimulation to the Occipital Place Area Biases Gaze During Scene Viewing. Frontiers in Human Neuroscience, 2018, 12, 189.	2.0	4
104	Scenes in the Human Brain: Comparing 2D versus 3D Representations. Neuron, 2019, 101, 8-10.	8.1	3
105	Intention to learn modulates the impact of reward and punishment on sequence learning. Scientific Reports, 2020, 10, 8906.	3.3	3
106	The nature of neural object representations during dynamic occlusion. Cortex, 2022, 153, 66-86.	2.4	3
107	Acquisition of Long-Term Visual Representations: Psychological and Neural Mechanisms. , 2005, , 11-35.		2
108	Long-term plasticity in adult somatosensory cortex: functional reorganization after surgical removal of an arteriovenous malformation. Neurocase, 2015, 21, 618-627.	0.6	1

#	Article	IF	CITATIONS
109	Facing up to stereotypes. Nature Neuroscience, 2016, 19, 763-764.	14.8	1
110	Automatic processing of whole objects in a part identification task. Journal of Vision, 2010, 3, 509-509.	0.3	0
111	Imaging Perception., 2014, , 157-190.		0