
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8908457/publications.pdf Version: 2024-02-01

MADTIIN RED

#	Article	IF	CITATIONS
1	Profile of the in silico secretome of the palm dieback pathogen, Fusarium oxysporum f. sp. albedinis, a fungus that puts natural oases at risk. PLoS ONE, 2022, 17, e0260830.	2.5	4
2	Genome sequences of 38 Fusarium oxysporum strains. BMC Research Notes, 2022, 15, .	1.4	1
3	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	2.2	107
4	A single gene in <i>Fusarium oxysporum</i> limits host range. Molecular Plant Pathology, 2021, 22, 108-116.	4.2	12
5	Comparative genomics of <i>Fusarium oxysporum</i> f. sp. <i>melonis</i> strains reveals nine lineages and a new sequence type of <scp>AvrFom2</scp> . Environmental Microbiology, 2021, 23, 2035-2053.	3.8	5
6	Patternâ€triggered immunity restricts host colonization by endophytic fusaria, but does not affect endophyteâ€mediated resistance. Molecular Plant Pathology, 2021, 22, 204-215.	4.2	14
7	Putative Effector Genes Distinguish Two Pathogenicity Groups of <i>Fusarium oxysporum</i> f. sp. <i>spinaciae</i> . Molecular Plant-Microbe Interactions, 2021, 34, 141-156.	2.6	14
8	A pair of effectors encoded on a conditionally dispensable chromosome of Fusarium oxysporum suppress host-specific immunity. Communications Biology, 2021, 4, 707.	4.4	23
9	Quantitative resistance linked to late effectors. New Phytologist, 2021, 231, 1301-1303.	7.3	3
10	Number of Candidate Effector Genes in Accessory Genomes Differentiates Pathogenic From Endophytic Fusarium oxysporum Strains. Frontiers in Plant Science, 2021, 12, 761740.	3.6	17
11	Rapid evolution in plant–microbe interactions – a molecular genomics perspective. New Phytologist, 2020, 225, 1134-1142.	7.3	96
12	Host-specificity factors in plant pathogenic fungi. Fungal Genetics and Biology, 2020, 144, 103447.	2.1	38
13	From laboratory to field: applying the Fo47 biocontrol strain in potato fields. European Journal of Plant Pathology, 2020, 158, 645-654.	1.7	3
14	Editorial: Secretomics: More Secrets to Unravel on Plant-Fungus Interactions. Frontiers in Plant Science, 2020, 11, 601021.	3.6	0
15	Related mobile pathogenicity chromosomes in <i>Fusarium oxysporum</i> determine host range on cucurbits. Molecular Plant Pathology, 2020, 21, 761-776.	4.2	36
16	Partial pathogenicity chromosomes in <i>Fusarium oxysporum</i> are sufficient to cause disease and can be horizontally transferred. Environmental Microbiology, 2020, 22, 4985-5004.	3.8	29
17	The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes. Communications Biology, 2020, 3, 50.	4.4	55
18	Diminished Pathogen and Enhanced Endophyte Colonization upon Colnoculation of Endophytic and Pathogenic Fusarium Strains. Microorganisms, 2020, 8, 544.	3.6	15

#	Article	IF	CITATIONS
19	The rootâ€invading pathogen <i>Fusarium oxysporum</i> targets patternâ€ŧriggered immunity using both cytoplasmic and apoplastic effectors. New Phytologist, 2020, 227, 1479-1492.	7.3	35
20	Endophyte-Mediated Resistance in Tomato to Fusarium oxysporum Is Independent of ET, JA, and SA. Frontiers in Plant Science, 2019, 10, 979.	3.6	70
21	Transcript accumulation in a trifold interaction gives insight into mechanisms of biocontrol. New Phytologist, 2019, 224, 547-549.	7.3	2
22	Pathogenâ€induced <scp>pH</scp> changes regulate the growthâ€defense balance in plants. EMBO Journal, 2019, 38, e101822.	7.8	65
23	Fusarium oxysporum colonizes the stem of resistant tomato plants, the extent varying with the R-gene present. European Journal of Plant Pathology, 2019, 154, 55-65.	1.7	41
24	Use of Comparative Genomics-Based Markers for Discrimination of Host Specificity in Fusarium oxysporum. Applied and Environmental Microbiology, 2018, 84, .	3.1	62
25	Xylem Sap Proteomics Reveals Distinct Differences Between R Gene- and Endophyte-Mediated Resistance Against Fusarium Wilt Disease in Tomato. Frontiers in Microbiology, 2018, 9, 2977.	3.5	63
26	A SIX1 homolog in Fusarium oxysporum f.sp. cubense tropical race 4 contributes to virulence towards Cavendish banana. PLoS ONE, 2018, 13, e0205896.	2.5	49
27	Multiple Evolutionary Trajectories Have Led to the Emergence of Races in Fusarium oxysporum f. sp. lycopersici. Applied and Environmental Microbiology, 2017, 83, .	3.1	36
28	The tomato <i>I</i> gene for Fusarium wilt resistance encodes an atypical leucineâ€rich repeat receptorâ€like protein whose function is nevertheless dependent on <scp>SOBIR</scp> 1 and <scp>SERK</scp> 3/ <scp>BAK</scp> 1. Plant Journal, 2017, 89, 1195-1209.	5.7	103
29	A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species. Scientific Reports, 2017, 7, 9042.	3.3	115
30	The Distribution of Miniature Impala Elements and SIX Genes in the Fusarium Genus is Suggestive of Horizontal Gene Transfer. Journal of Molecular Evolution, 2017, 85, 14-25.	1.8	40
31	Adaptation to the Host Environment by Plant-Pathogenic Fungi. Annual Review of Phytopathology, 2017, 55, 427-450.	7.8	56
32	Mitochondrial genomes reveal recombination in the presumed asexual Fusarium oxysporum species complex. BMC Genomics, 2017, 18, 735.	2.8	65
33	The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genetics, 2017, 13, e1006832.	3.5	187
34	Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes. PLoS Genetics, 2016, 12, e1006401.	3.5	75
35	Dispensable chromosomes in <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> . Molecular Plant Pathology, 2016, 17, 1455-1466.	4.2	94
36	Exchange of core chromosomes and horizontal transfer of lineageâ€ s pecific chromosomes in <i>Fusarium oxysporum</i> . Environmental Microbiology, 2016, 18, 3702-3713.	3.8	102

#	Article	IF	CITATIONS
37	Insights into Adaptations to a Near-Obligate Nematode Endoparasitic Lifestyle from the Finished Genome of Drechmeria coniospora. Scientific Reports, 2016, 6, 23122.	3.3	32
38	Nuclear dynamics and genetic rearrangement in heterokaryotic colonies of Fusarium oxysporum. Fungal Genetics and Biology, 2016, 91, 20-31.	2.1	34
39	Comparative genomics of <i>Fusarium oxysporum</i> f. sp.Â <i>melonis</i> reveals the secreted protein recognized by the <i>Fomâ€2</i> resistance gene in melon. New Phytologist, 2016, 209, 307-318.	7.3	87
40	Suppressor of fusion, a Fusarium oxysporum homolog of Ndt80, is required for nutrient-dependent regulation of anastomosis. Fungal Genetics and Biology, 2016, 95, 49-57.	2.1	9
41	Effector profiles distinguish <i>formae speciales</i> of <i>Fusarium oxysporum</i> . Environmental Microbiology, 2016, 18, 4087-4102.	3.8	179
42	Non-canonical Helitrons in Fusarium oxysporum. Mobile DNA, 2016, 7, 27.	3.6	13
43	The <i><scp>AVR</scp>2–<scp>SIX</scp>5</i> gene pair is required to activate <i>lâ€2</i> â€mediated immunity in tomato. New Phytologist, 2015, 208, 507-518.	7.3	113
44	The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases. International Journal of Molecular Sciences, 2015, 16, 23970-23993.	4.1	106
45	The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection. Frontiers in Plant Science, 2015, 6, 967.	3.6	95
46	Dynamics of the Establishment of Multinucleate Compartments in Fusarium oxysporum. Eukaryotic Cell, 2015, 14, 78-85.	3.4	11
47	Fluorescence Assisted Selection of Transformants (FAST): Using flow cytometry to select fungal transformants. Fungal Genetics and Biology, 2015, 76, 104-109.	2.1	14
48	Fusarium oxysporum. , 2014, , 99-119.		9
49	The <i>Fusarium oxysporum</i> Effector Six6 Contributes to Virulence and Suppresses I-2-Mediated Cell Death. Molecular Plant-Microbe Interactions, 2014, 27, 336-348.	2.6	139
50	<scp><i>EBR1</i></scp> genomic expansion and its role in virulence of <scp><i>F</i></scp> <i>usarium</i>	3.8	30
51	MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics, 2013, 14, 119.	2.8	233
52	Phosphatidylinositol 4â€phosphate is associated to extracellular lipoproteic fractions and is detected in tomato apoplastic fluids. Plant Biology, 2012, 14, 41-49.	3.8	23
53	Genetic basis of carotenoid overproduction in Fusarium oxysporum. Fungal Genetics and Biology, 2012, 49, 684-696.	2.1	25
54	Horizontal Transfer of Supernumerary Chromosomes in Fungi. Methods in Molecular Biology, 2012, 835, 427-437.	0.9	16

#	Article	IF	CITATIONS
55	Degradation of aromatic compounds through the βâ€ketoadipate pathway is required for pathogenicity of the tomato wilt pathogen <i><scp>F</scp>usarium oxysporum</i> f. sp. <i>lycopersici</i> . Molecular Plant Pathology, 2012, 13, 1089-1100.	4.2	45
56	Variation in potential effector genes distinguishing Australian and nonâ€Australian isolates of the cotton wilt pathogen <i>Fusarium oxysporum</i> f.sp. <i>vasinfectum</i> . Plant Pathology, 2011, 60, 232-243.	2.4	78
57	The <i>FRP1</i> Fâ€box gene has different functions in sexuality, pathogenicity and metabolism in three fungal pathogens. Molecular Plant Pathology, 2011, 12, 548-563.	4.2	22
58	The tomato xylem sap protein XSP10 is required for full susceptibility to Fusarium wilt disease. Journal of Experimental Botany, 2011, 62, 963-973.	4.8	52
59	The genomic organization of plant pathogenicity in Fusarium species. Current Opinion in Plant Biology, 2010, 13, 420-426.	7.1	142
60	The arms race between tomato and <i>Fusarium oxysporum</i> . Molecular Plant Pathology, 2010, 11, 309-314.	4.2	246
61	Methyl salicylate production in tomato affects biotic interactions. Plant Journal, 2010, 62, 124-134.	5.7	77
62	Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464, 367-373.	27.8	1,442
63	Lessons from Fungal F-Box Proteins. Eukaryotic Cell, 2009, 8, 677-695.	3.4	93
64	The Nuclear Protein Sge1 of Fusarium oxysporum Is Required for Parasitic Growth. PLoS Pathogens, 2009, 5, e1000637.	4.7	135
65	The Genome of Nectria haematococca: Contribution of Supernumerary Chromosomes to Gene Expansion. PLoS Genetics, 2009, 5, e1000618.	3.5	402
66	Evolutionary relationships between Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici isolates inferred from mating type, elongation factor-1α and exopolygalacturonase sequences. Mycological Research, 2009, 113, 1181-1191.	2.5	38
67	The effector protein Avr2 of the xylem olonizing fungus <i>Fusarium oxysporum</i> activates the tomato resistance protein lâ€2 intracellularly. Plant Journal, 2009, 58, 970-978.	5.7	267
68	Pathogen profile update: <i>Fusarium oxysporum</i> . Molecular Plant Pathology, 2009, 10, 311-324.	4.2	602
69	Mutation of <i>CRE1</i> in <i>Fusarium oxysporum</i> reverts the pathogenicity defects of the <i>FRP1</i> deletion mutant. Molecular Microbiology, 2009, 74, 1100-1113.	2.5	50
70	Effector gene screening allows unambiguous identification of <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> ¢€ƒraces and discrimination from other <i>formae speciales</i> . FEMS Microbiology Letters, 2009, 300, 201-215.	1.8	221
71	Transformation ofFusarium virguliforme,the Causal Agent of Sudden Death Syndrome of Soybean. Journal of Phytopathology, 2009, 157, 319-321.	1.0	13
72	Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biology, 2009, 10, R4.	9.6	111

#	Article	IF	CITATIONS
73	Impaired Colonization and Infection of Tomato Roots by the Δ <i>frp1</i> Mutant of <i>Fusarium oxysporum</i> Correlates with Reduced CWDE Gene Expression. Molecular Plant-Microbe Interactions, 2009, 22, 507-518.	2.6	35
74	Recent developments in the molecular discrimination of <i>formae speciales</i> of <i>Fusarium oxysporum</i> . Pest Management Science, 2008, 64, 781-788.	3.4	143
75	The presence of a virulence locus discriminates <i>Fusarium oxysporum</i> isolates causing tomato wilt from other isolates. Environmental Microbiology, 2008, 10, 1475-1485.	3.8	130
76	Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genetics and Biology, 2008, 45, 1257-1264.	2.1	99
77	Suppression of Plant Resistance Gene-Based Immunity by a Fungal Effector. PLoS Pathogens, 2008, 4, e1000061.	4.7	338
78	Protein Extraction from Xylem and Phloem Sap. , 2007, 355, 27-36.		14
79	Virulence Genes and the Evolution of Host Specificity in Plant-Pathogenic Fungi. Molecular Plant-Microbe Interactions, 2007, 20, 1175-1182.	2.6	133
80	The <i>Fusarium graminearum</i> Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization. Science, 2007, 317, 1400-1402.	12.6	837
81	The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Molecular Plant Pathology, 2007, 8, 215-221.	4.2	345
82	Significance of Inducible Defense-related Proteins in Infected Plants. Annual Review of Phytopathology, 2006, 44, 135-162.	7.8	2,754
83	The presence of GC-AG introns in Neurospora crassa and other euascomycetes determined from analyses of complete genomes: implications for automated gene prediction. Genomics, 2006, 87, 338-347.	2.9	23
84	Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiology Letters, 2005, 253, 19-27.	1.8	185
85	Frp1 is a Fusarium oxysporum F-box protein required for pathogenicity on tomato. Molecular Microbiology, 2005, 57, 1051-1063.	2.5	80
86	Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle. Plant Molecular Biology, 2005, 57, 731-748.	3.9	62
87	Fusarium oxysporum Evades I-3-Mediated Resistance Without Altering the Matching Avirulence Gene. Molecular Plant-Microbe Interactions, 2005, 18, 15-23.	2.6	120
88	Drifter, a novel, low copy hAT-like transposon in Fusarium oxysporum is activated during starvation. Fungal Genetics and Biology, 2005, 42, 546-553.	2.1	26
89	A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Molecular Microbiology, 2004, 53, 1373-1383.	2.5	359
90	Construction of a mitotic linkage map of Fusarium oxysporum based on Foxy -AFLPs. Molecular Genetics and Genomics, 2003, 269, 215-226.	2.1	21

#	Article	IF	CITATIONS
91	A tomato xylem sap protein represents a new family of small cysteine-rich proteins with structural similarity to lipid transfer proteins. FEBS Letters, 2003, 534, 82-86.	2.8	49
92	Mass Spectrometric Identification of Isoforms of PR Proteins in Xylem Sap of Fungus-Infected Tomato. Plant Physiology, 2002, 130, 904-917.	4.8	201
93	Dissection of Transient Oxidative Stress Response inSaccharomyces cerevisiaeby Using DNA Microarrays. Molecular Biology of the Cell, 2002, 13, 2783-2794.	2.1	103
94	The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Molecular Microbiology, 2001, 40, 1067-1083.	2.5	161
95	The Transcriptional Response of Saccharomyces cerevisiae to Osmotic Shock. Journal of Biological Chemistry, 2000, 275, 8290-8300.	3.4	491
96	Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Letters, 2000, 472, 159-165.	2.8	81
97	Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology (United Kingdom), 1999, 145, 715-727.	1.8	115
98	Osmotic Stress-Induced Gene Expression in <i>Saccharomyces cerevisiae</i> Requires Msn1p and the Novel Nuclear Factor Hot1p. Molecular and Cellular Biology, 1999, 19, 5474-5485.	2.3	248
99	ATP-dependent proteases that also chaperone protein biogenesis. Trends in Biochemical Sciences, 1997, 22, 118-123.	7.5	228
100	Afg3p, a mitochondrial ATP-dependent metalloprotease, is involved in degradation of mitochondrially-encoded Cox1, Cox3, Cob, Su6, Su8 and Su9 subunits of the inner membrane complexes III, IV and V. FEBS Letters, 1996, 381, 42-46.	2.8	79
101	MBA1encodes a mitochondrial membrane-associated protein required for biogenesis of the respiratory chain. FEBS Letters, 1996, 388, 185-188.	2.8	21
102	Promotion of Mitochondrial Membrane Complex Assembly by a Proteolytically Inactive Yeast Lon. Science, 1996, 274, 103-106.	12.6	167
103	Three genes for mitochondrial proteins suppress null-mutations in both Afg3 and Rca1 when over-expressed. Current Genetics, 1996, 30, 206-211.	1.7	51
104	The role of protein degradation in mitochondrial function and biogenesis. Current Genetics, 1996, 30, 367-380.	1.7	109
105	Yeast sequencing reports. Sequence of theAFG3 gene encoding a new member of the FtsH/Yme1/Tma subfamily of the AAA-protein family. Yeast, 1994, 10, 1389-1394.	1.7	71
106	Single point mutations in domain II of the yeast mitochondrial release factor mRF-1 affect ribosome binding. Nucleic Acids Research, 1993, 21, 5308-5315.	14.5	17
107	Sequence comparison of new prokaryotic and mitochondrial members of the polypeptide chain release factor family predicts a five-domain model for release factor structure. Nucleic Acids Research, 1992, 20, 4423-4428.	14.5	46
108	The yeast nuclear geneMRF1encodes a mitochondrial peptide chain release factor and cures several mitochondrial RNA splicing defects. Nucleic Acids Research, 1992, 20, 6339-6346.	14.5	57