Xiao Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8908454/publications.pdf Version: 2024-02-01

471509 526287 1,029 51 17 27 citations h-index g-index papers 51 51 51 1853 citing authors docs citations times ranked all docs

XIAO XIAO

#	Article	IF	CITATIONS
1	An alternative splicing hypothesis for neuropathology of schizophrenia: evidence from studies on historical candidate genes and multi-omics data. Molecular Psychiatry, 2022, 27, 95-112.	7.9	19
2	Regulatory variants at 2q33.1 confer schizophrenia risk by modulating distal gene <i>TYW5</i> expression. Brain, 2022, 145, 770-786.	7.6	8
3	Revisiting tandem repeats in psychiatric disorders from perspectives of genetics, physiology, and brain evolution. Molecular Psychiatry, 2022, 27, 466-475.	7.9	14
4	Regulatory Variant rs2535629 in <i>ITIH3</i> Intron Confers Schizophrenia Risk By Regulating CTCF Binding and <i>SFMBT1</i> Expression. Advanced Science, 2022, 9, e2104786.	11.2	8
5	Functional variant rs2270363 on 16p13.3 confers schizophrenia risk by regulating <i>NMRAL1</i> . Brain, 2022, 145, 2569-2585.	7.6	4
6	ATAD3B and SKIL polymorphisms associated with antipsychotic-induced QTc interval change in patients with schizophrenia: a genome-wide association study. Translational Psychiatry, 2022, 12, 56.	4.8	8
7	Epistatic interactions of NRG1 and ERBB4 on antipsychotic treatment response in first-episode schizophrenia patients. Schizophrenia Research, 2022, 241, 197-200.	2.0	2
8	Functional genomics elucidates regulatory mechanisms of Parkinson's disease-associated variants. BMC Medicine, 2022, 20, 68.	5.5	2
9	Phenotypes, mechanisms and therapeutics: insights from bipolar disorder GWAS findings. Molecular Psychiatry, 2022, 27, 2927-2939.	7.9	17
10	Convergent lines of evidence support <i>NOTCH4</i> as a schizophrenia risk gene. Journal of Medical Genetics, 2021, 58, 666-678.	3.2	9
11	Translational genomics and beyond in bipolar disorder. Molecular Psychiatry, 2021, 26, 186-202.	7.9	30
12	A Human-Specific Schizophrenia Risk Tandem Repeat Affects Alternative Splicing of a Human-Unique Isoform <i>AS3MT</i> d2d3 and Mushroom Dendritic Spine Density. Schizophrenia Bulletin, 2021, 47, 219-227.	4.3	19
13	Functional Genomics Identify a Regulatory Risk Variation rs4420550 in the 16p11.2 Schizophrenia-Associated Locus. Biological Psychiatry, 2021, 89, 246-255.	1.3	20
14	Novel Risk Loci Associated With Genetic Risk for Bipolar Disorder Among Han Chinese Individuals. JAMA Psychiatry, 2021, 78, 320.	11.0	35
15	Independent replications and integrative analyses confirm TRANK1 as a susceptibility gene for bipolar disorder. Neuropsychopharmacology, 2021, 46, 1103-1112.	5.4	20
16	Integrative Analyses Followed by Functional Characterization Reveal TMEM180 as a Schizophrenia Risk Gene. Schizophrenia Bulletin, 2021, 47, 1364-1374.	4.3	7
17	Genome wide association study identifies four loci for early onset schizophrenia. Translational Psychiatry, 2021, 11, 248.	4.8	15
18	Regulation of TRANK1 by GSK-3 in the brain: unexpected interactions. Molecular Psychiatry, 2021, 26, 6109-6111.	7.9	3

ΧΙΑΟ ΧΙΑΟ

#	Article	IF	CITATIONS
19	Genome-wide association study followed by trans-ancestry meta-analysis identify 17 new risk loci for schizophrenia. BMC Medicine, 2021, 19, 177.	5.5	12
20	Joint-Tissue Integrative Analysis Identified Hundreds of Schizophrenia Risk Genes. Molecular Neurobiology, 2021, , 1.	4.0	4
21	Identification of a Risk Locus at 7p22.3 for Schizophrenia and Bipolar Disorder in East Asian Populations. Frontiers in Genetics, 2021, 12, 789512.	2.3	0
22	Further evidence for the association between LRP8 and schizophrenia. Schizophrenia Research, 2020, 215, 499-505.	2.0	10
23	The genome-wide risk alleles for psychiatric disorders at 3p21.1 show convergent effects on mRNA expression, cognitive function, and mushroom dendritic spine. Molecular Psychiatry, 2020, 25, 48-66.	7.9	59
24	Convergent genomic signatures of high-altitude adaptation among domestic mammals. National Science Review, 2020, 7, 952-963.	9.5	52
25	A functional missense variant in ITIH3 affects protein expression and neurodevelopment and confers schizophrenia risk in the Han Chinese population. Journal of Genetics and Genomics, 2020, 47, 233-248.	3.9	10
26	Further confirmation of netrin 1 receptor (DCC) as a depression risk gene via integrations of multi-omics data. Translational Psychiatry, 2020, 10, 98.	4.8	26
27	Genome-wide Association Study of Creativity Reveals Genetic Overlap With Psychiatric Disorders, Risk Tolerance, and Risky Behaviors. Schizophrenia Bulletin, 2020, 46, 1317-1326.	4.3	23
28	Identification of a functional human-unique 351-bp Alu insertion polymorphism associated with major depressive disorder in the 1p31.1 GWAS risk loci. Neuropsychopharmacology, 2020, 45, 1196-1206.	5.4	17
29	The schizophrenia risk isoform ZNF804AE3E4 affects dendritic spine. Schizophrenia Research, 2020, 218, 324-325.	2.0	11
30	Identification of a functional 339 bp <italic>Alu</italic> insertion polymorphism in the schizophrenia-associated locus at 10q24.32. Zoological Research, 2020, 41, 84-89.	2.1	9
31	Transcriptomic analyses of humans and mice provide insights into depression. Zoological Research, 2020, 41, 632-643.	2.1	9
32	Identification of the primate-specific gene BTN3A2 as an additional schizophrenia risk gene in the MHC loci. EBioMedicine, 2019, 44, 530-541.	6.1	24
33	Genetic insights and neurobiological implications from NRXN1 in neuropsychiatric disorders. Molecular Psychiatry, 2019, 24, 1400-1414.	7.9	58
34	Interactome Analyses implicated CAMK2A in the genetic predisposition and pharmacological mechanism of Bipolar Disorder. Journal of Psychiatric Research, 2019, 115, 165-175.	3.1	12
35	Integrative analyses of major histocompatibility complex loci in the genome-wide association studies of major depressive disorder. Neuropsychopharmacology, 2019, 44, 1552-1561.	5.4	27
36	The depression GWAS risk allele predicts smaller cerebellar gray matter volume and reduced SIRT1 mRNA expression in Chinese population. Translational Psychiatry, 2019, 9, 333.	4.8	25

ΧΙΑΟ ΧΙΑΟ

#	Article	IF	CITATIONS
37	Five novel loci associated with antipsychotic treatment response in patients with schizophrenia: a genome-wide association study. Lancet Psychiatry,the, 2018, 5, 327-338.	7.4	110
38	Vesicular glutamate transporter 1 (VGLUT1)-mediated glutamate release and membrane GluA1 activation is involved in the rapid antidepressant-like effects of scopolamine in mice. Neuropharmacology, 2018, 131, 209-222.	4.1	35
39	The Gene Encoding Protocadherin 9 (PCDH9), a Novel Risk Factor for Major Depressive Disorder. Neuropsychopharmacology, 2018, 43, 1128-1137.	5.4	35
40	Replicated associations of FADS1, MAD1L1, and a rare variant at 10q26.13 with bipolar disorder in Chinese population. Translational Psychiatry, 2018, 8, 270.	4.8	21
41	Genetic association and meta-analysis of a schizophrenia GWAS variant rs10489202 in East Asian populations. Translational Psychiatry, 2018, 8, 144.	4.8	7
42	Further Evidence of an Association between <i>NCAN</i> rs1064395 and Bipolar Disorder. Molecular Neuropsychiatry, 2018, 4, 30-34.	2.9	10
43	Evaluation of European Schizophrenia GWAS Loci in Asian Populations via Comprehensive Meta-Analyses. Molecular Neurobiology, 2017, 54, 4071-4080.	4.0	19
44	Rare and common variants at 16p11.2 are associated with schizophrenia. Schizophrenia Research, 2017, 184, 105-108.	2.0	28
45	Common variants at 2q11.2, 8q21.3, and 11q13.2 are associated with major mood disorders. Translational Psychiatry, 2017, 7, 1273.	4.8	9
46	The schizophrenia susceptibility gene ZNF804A confers risk of major mood disorders. World Journal of Biological Psychiatry, 2017, 18, 557-562.	2.6	13
47	Identification of a Bipolar Disorder Vulnerable Gene CHDH at 3p21.1. Molecular Neurobiology, 2017, 54, 5166-5176.	4.0	9
48	Further evidence of <i>VRK2</i> rs2312147 associated with schizophrenia. World Journal of Biological Psychiatry, 2016, 17, 457-466.	2.6	15
49	Evidence of AS3MTd2d3-Associated Variants within 10q24.32-33 in the Genetic Risk of Major Affective Disorders. Molecular Neuropsychiatry, 2016, 2, 213-218.	2.9	14
50	Replication analyses of four chromosomal deletions with schizophrenia via independent largeâ€scale metaâ€analyses. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 1161-1169.	1.7	7
51	BDNF Val66Met polymorphism and bipolar disorder in European populations: A risk association in case-control, family-based and GWAS studies. Neuroscience and Biobehavioral Reviews, 2016, 68, 218-233.	6.1	69