
Joseph M Prospero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8908451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term characterisation of the vertical structure of the Saharan Air Layer over the Canary Islands using lidar and radiosonde profiles: implications for radiative and cloud processes over the subtropical Atlantic Ocean. Atmospheric Chemistry and Physics, 2022, 22, 739-763.	1.9	14
2	Sr-Nd-Hf isotopic analysis of reference materials and natural and anthropogenic particulate matter sources: Implications for accurately tracing North African dust in complex urban atmospheres. Talanta, 2022, 241, 123236.	2.9	4
3	Microplastics and nanoplastics in the marine-atmosphere environment. Nature Reviews Earth & Environment, 2022, 3, 393-405.	12.2	121
4	Interannual Variability in the Source Location of North African Dust Transported to the Amazon. Geophysical Research Letters, 2022, 49, .	1.5	6
5	Coupling Sr–Nd–Hf Isotope Ratios and Elemental Analysis to Accurately Quantify North African Dust Contributions to PM _{2.5} in a Complex Urban Atmosphere by Reducing Mineral Dust Collinearity. Environmental Science & Technology, 2022, 56, 7729-7740.	4.6	3
6	Tracking the changes of iron solubility and air pollutants traces as African dust transits the Atlantic in the Saharan dust outbreaks. Atmospheric Environment, 2021, 246, 118092.	1.9	11
7	Atmospheric Transport of North African Dustâ€Bearing Supermicron Freshwater Diatoms to South America: Implications for Iron Transport to the Equatorial North Atlantic Ocean. Geophysical Research Letters, 2021, 48, e2020GL090476.	1.5	12
8	The Discovery of African Dust Transport to the Western Hemisphere and the Saharan Air Layer: A History. Bulletin of the American Meteorological Society, 2021, 102, E1239-E1260.	1.7	35
9	Evaluation of natural aerosols in CRESCENDO Earth system models (ESMs): mineral dust. Atmospheric Chemistry and Physics, 2021, 21, 10295-10335.	1.9	20
10	Characterizing and Quantifying African Dust Transport and Deposition to South America: Implications for the Phosphorus Budget in the Amazon Basin. Global Biogeochemical Cycles, 2020, 34, e2020GB006536.	1.9	46
11	Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land–atmosphere model (GFDL) Tj ETQq1 1 C).78449314	rgB ⊉ ‡Overloc
12	African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16216-16221.	3.3	100
13	Identifying and Quantifying the Impacts of Advected North African Dust on the Concentration and Composition of Airborne Fine Particulate Matter in Houston and Galveston, Texas. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12282-12300.	1.2	23
14	Is Summer African Dust Arriving Earlier to Barbados? The Updated Long-Term In Situ Dust Mass Concentration Time Series from Ragged Point, Barbados, and Miami, Florida. Bulletin of the American Meteorological Society, 2019, 100, 1981-1986.	1.7	43
15	Linking Barbados Mineral Dust Aerosols to North African Sources Using Elemental Composition and Radiogenic Sr, Nd, and Pb Isotope Signatures. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1384-1400.	1.2	33
16	Impact of long-range transport over the Atlantic Ocean on Saharan dust optical and microphysical properties based on AERONET data. Atmospheric Chemistry and Physics, 2018, 18, 9411-9424.	1.9	32
17	Temporal and spatial variability of Icelandic dust emissions and atmospheric transport. Atmospheric Chemistry and Physics, 2017, 17, 10865-10878.	1.9	37
18	Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans. Atmospheric Chemistry and Physics, 2017, 17, 8189-8210.	1.9	26

#	Article	IF	CITATIONS
19	Effects of African dust deposition on phytoplankton in the western tropical Atlantic Ocean off Barbados. Global Biogeochemical Cycles, 2016, 30, 716-734.	1.9	85
20	Predicting the mineral composition of dust aerosols: Insights from elemental composition measured at the IzaA±a Observatory. Geophysical Research Letters, 2016, 43, 10520-10529.	1.5	29
21	Properties of cloud condensation nuclei (CCN) in the trade wind marine boundary layer of the western North Atlantic. Atmospheric Chemistry and Physics, 2016, 16, 2675-2688.	1.9	43
22	The Barbados Cloud Observatory: Anchoring Investigations of Clouds and Circulation on the Edge of the ITCZ. Bulletin of the American Meteorological Society, 2016, 97, 787-801.	1.7	134
23	The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloudâ€Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophysical Research Letters, 2015, 42, 1984-1991.	1.5	251
24	Quantification of trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO lidar measurements. Remote Sensing of Environment, 2015, 159, 232-249.	4.6	146
25	Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality. Global Biogeochemical Cycles, 2014, 28, 757-773.	1.9	197
26	Geochemical fingerprinting of trans-Atlantic African dust based on radiogenic Sr-Nd-Hf isotopes and rare earth element anomalies. Geology, 2014, 42, 675-678.	2.0	76
27	Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmospheric Chemistry and Physics, 2014, 14, 3657-3690.	1.9	240
28	Identifying Sources of Aeolian Mineral Dust: Present and Past. , 2014, , 51-74.		25
29	Quantifying the Contribution of Long-Range Saharan Dust Transport on Particulate Matter Concentrations in Houston, Texas, Using Detailed Elemental Analysis. Environmental Science & Technology, 2013, 47, 130909083424001.	4.6	39
30	Vertical structure of aerosols, temperature, and moisture associated with an intense African dust event observed over the eastern Caribbean. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4623-4643.	1.2	28
31	Understanding the Transport and Impact of African Dust on the Caribbean Basin. Bulletin of the American Meteorological Society, 2013, 94, 1329-1337.	1.7	162
32	High-Latitude Dust Over the North Atlantic: Inputs from Icelandic Proglacial Dust Storms. Science, 2012, 335, 1078-1082.	6.0	139
33	Atmospheric fluxes of organic N and P to the global ocean. Global Biogeochemical Cycles, 2012, 26, .	1.9	179
34	Claes G. H. Rooth (1928-2011). Eos, 2012, 93, 235-236.	0.1	0
35	Soil genesis on the island of Bermuda in the Quaternary: The importance of African dust transport and deposition. Journal of Geophysical Research, 2012, 117, .	3.3	34
36	Globalâ€scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 2012, 50, .	9.0	1,041

#	Article	IF	CITATIONS
37	CALIPSO-Derived Three-Dimensional Structure of Aerosol over the Atlantic Basin and Adjacent Continents. Journal of Climate, 2012, 25, 6862-6879.	1.2	115
38	Atmospheric Transport and Deposition of Mineral Dust to the Ocean: Implications for Research Needs. Environmental Science & Technology, 2012, 46, 10390-10404.	4.6	187
39	Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	177
40	Deposition of7Be to Bermuda and the regional ocean: Environmental factors affecting estimates of atmospheric flux to the ocean. Journal of Geophysical Research, 2011, 116, .	3.3	25
41	Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 2011, 11, 7781-7816.	1.9	839
42	Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews, 2010, 99, 61-97.	4.0	484
43	Temporal variability of the elemental composition of African dust measured in trade wind aerosols at Barbados and Miami. Marine Chemistry, 2010, 120, 71-82.	0.9	92
44	Geochemical and mineralogical evidence for Sahara and Sahel dust additions to Quaternary soils on Lanzarote, eastern Canary Islands, Spain. Terra Nova, 2010, 22, 399-410.	0.9	54
45	Trends in the solubility of iron in dustâ€dominated aerosols in the equatorial Atlantic trade winds: Importance of iron speciation and sources. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	68
46	African dust outbreaks: A satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. Journal of Geophysical Research, 2010, 115, .	3.3	81
47	African dust deposition to Florida: Temporal and spatial variability and comparisons to models. Journal of Geophysical Research, 2010, 115, .	3.3	100
48	Aerosol-Induced Large-Scale Variability in Precipitation over the Tropical Atlantic. Journal of Climate, 2009, 22, 4970-4988.	1.2	28
49	African aerosol and large-scale precipitation variability over West Africa. Environmental Research Letters, 2009, 4, 015006.	2.2	39
50	Reply to: African dust and asthma in the Caribbean—medical and statistical perspectives by M A Monteil and R Antoine. International Journal of Biometeorology, 2009, 53, 383-385.	1.3	2
51	Response to "Aerosol iron deposition to the surface ocean — Modes of iron supply and biological responses―by P.W. Boyd, D.S. Mackie, and K.A. Hunter. Marine Chemistry, 2009, 116, 56-57.	0.9	2
52	Atmospheric Iron Deposition: Global Distribution, Variability, and Human Perturbations. Annual Review of Marine Science, 2009, 1, 245-278.	5.1	536
53	Relationship between African dust carried in the Atlantic trade winds and surges in pediatric asthma attendances in the Caribbean. International Journal of Biometeorology, 2008, 52, 823-832.	1.3	89
54	Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean. Science, 2008, 320, 893-897.	6.0	964

#	Article	IF	CITATIONS
55	Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida. Journal of Geophysical Research, 2007, 112, .	3.3	155
56	African Dust: Its Large-Scale Transport over the Atlantic Ocean and its Impact on the Mediterranean Region. NATO Science Series Series IV, Earth and Environmental Sciences, 2007, , 15-38.	0.3	5
57	Saharan Dust Impacts and Climate Change. Oceanography, 2006, 19, 60-61.	0.5	15
58	Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia, 2005, 21, 1-19.	0.7	355
59	The climate-environment-society nexus in the Sahara from prehistoric times to the present day. Journal of North African Studies, 2005, 10, 253-292.	0.6	77
60	Clobal Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science, 2005, 308, 67-71.	6.0	2,365
61	Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	930
62	Understanding the long-term variability of African dust transport across the Atlantic as recorded in both Barbados surface concentrations and large-scale Total Ozone Mapping Spectrometer (TOMS) optical thickness. Journal of Geophysical Research, 2005, 110, .	3.3	153
63	Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation. Environmental Modelling and Software, 2004, 19, 113-128.	1.9	429
64	Interhemispheric Transport of Viable Fungi and Bacteria from Africa to the Caribbean with Soil Dust. , 2004, , 127-133.		24
65	Long-term record of nss-sulfate and nitrate in aerosols on Midway Island, 1981–2000: Evidence of increased (now decreasing?) anthropogenic emissions from Asia. Journal of Geophysical Research, 2003, 108, AAC 10-1.	3.3	106
66	Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE). Journal of Geophysical Research, 2003, 108, .	3.3	145
67	Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophysical Research Letters, 2003, 30, .	1.5	323
68	African Droughts and Dust Transport to the Caribbean: Climate Change Implications. Science, 2003, 302, 1024-1027.	6.0	886
69	Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. , 2003, .		1
70	Marine biogenic and anthropogenic contributions to non-sea-salt sulfate in the marine boundary layer over the North Atlantic Ocean. Journal of Geophysical Research, 2002, 107, AAC 3-1.	3.3	119
71	Cloud susceptibility and the first aerosol indirect forcing: Sensitivity to black carbon and aerosol concentrations. Journal of Geophysical Research, 2002, 107, AAC 10-1-AAC 10-23.	3.3	118
72	Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 2002, 40, 2-1.	9.0	2,380

#	Article	IF	CITATIONS
73	Radiative properties of aerosols in Saharan dust outbreaks using ground-based and satellite data: Applications to radiative forcing. Journal of Geophysical Research, 2001, 106, 18403-18416.	3.3	45
74	Sources and distributions of dust aerosols simulated with the GOCART model. Journal of Geophysical Research, 2001, 106, 20255-20273.	3.3	1,620
75	Iron fertilization and the Trichodesmiumresponse on the West Florida shelf. Limnology and Oceanography, 2001, 46, 1261-1277.	1.6	220
76	How are climate and marine biological outbreaks functionally linked?. Hydrobiologia, 2001, 460, 213-220.	1.0	53
77	Title is missing!. Water, Air, and Soil Pollution, 2001, 125, 291-317.	1.1	98
78	HNO3 losses within the cyclone inlet of a diffusion-denuder system under simulated marine environments. Atmospheric Environment, 2001, 35, 985-993.	1.9	16
79	How are climate and marine biological outbreaks functionally linked?. , 2001, , 213-220.		22
80	African dust and the demise of Caribbean Coral Reefs. Geophysical Research Letters, 2000, 27, 3029-3032.	1.5	331
81	Assessing the Impact of Advected African Dust on Air Quality and Health in the Eastern United States. Human and Ecological Risk Assessment (HERA), 1999, 5, 471-479.	1.7	39
82	Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3396-3403.	3.3	477
83	Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. Journal of Geophysical Research, 1999, 104, 15917-15927.	3.3	516
84	Composition of the troposphere over the Indian Ocean during the monsoonal transition. Journal of Geophysical Research, 1997, 102, 18981-18995.	3.3	74
85	Observations of aerosols in the free troposphere and marine boundary layer of the subtropical Northeast Atlantic: Discussion of processes determining their size distribution. Journal of Geophysical Research, 1997, 102, 21315-21328.	3.3	106
86	Influence of continental outflow events on the aerosol composition at Cheju Island, South Korea. Journal of Geophysical Research, 1997, 102, 28551-28574.	3.3	89
87	Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product. Journal of Geophysical Research, 1997, 102, 16889-16909.	3.3	669
88	A large silicon-aluminum aerosol plume in Central Illinois: North African desert dust?. Atmospheric Environment, 1996, 30, 3789-3799.	1.9	56
89	Origin of Bermuda's clay-rich Quaternary paleosols and their paleoclimatic significance. Journal of Geophysical Research, 1996, 101, 23389-23400.	3.3	53

Results of the pre-ace 2 campaigns in the subtropical North Atlantic. , 1996, , 948-951.

1

#	Article	IF	CITATIONS
91	Temporal variability of summer-time ozone and aerosols in the free troposphere over the eastern North Atlantic. Geophysical Research Letters, 1995, 22, 2925-2928.	1.5	100
92	Sources of aerosol nitrate and non-sea-salt sulfate in the Iceland region. Science of the Total Environment, 1995, 160-161, 181-191.	3.9	37
93	Non-sea-salt sulfate and methanesulfonate at American Samoa. Journal of Geophysical Research, 1994, 99, 3587.	3.3	63
94	Atmosphere beryllium-7 concentrations over the Pacific Ocean. Geophysical Research Letters, 1994, 21, 561-564.	1.5	27
95	Mineralogy of aeolian dust reaching the North Pacific Ocean: 1. Sampling and analysis. Journal of Geophysical Research, 1994, 99, 21017.	3.3	108
96	Atmospheric Chemistry and Composition of Air Over the North Atlantic Ocean. , 1994, , 19-38.		3
97	Nitrogen and sulfur species in Antarctic aerosols at Mawson, Palmer Station, and Marsh (King George) Tj ETQq1 1	0.784314 1.4	rgBT /Over
98	The temporal and spatial variability of scavenging ratios for NSS sulfate, nitrate, methanesulfonate and sodium in the Atmosphere over the North Atalantic Ocean. Atmospheric Environment Part A General Topics, 1993, 27, 235-250.	1.3	114
99	Photoreduction of iron(III) in marine mineral aerosol solutions. Journal of Geophysical Research, 1993, 98, 9039-9046.	3.3	124
100	Sources of nitrate and ozone in the marine boundary layer of the tropical north Atlantic. Journal of Geophysical Research, 1992, 97, 11575-11589.	3.3	66
101	Nitrogen and sulfur species in acrosols at Mawson, Antarctica, and their relationship to natural radionuclides. Journal of Atmospheric Chemistry, 1992, 14, 181-204.	1.4	105
102	Trace elements in aerosol particles from Bermuda and Barbados: Concentrations, sources and relationships to aerosol sulfate. Journal of Atmospheric Chemistry, 1992, 14, 439-457.	1.4	99
103	The solubility of ferric ion in marine mineral aerosol solutions at ambient relative humidities. Marine Chemistry, 1992, 38, 91-107.	0.9	128
104	The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 1991, 5, 193-259.	1.9	1,478
105	The Long-Range Transport of Mineral Aerosols: Group Report. , 1990, , 197-229.		12
106	Mineral-Aerosol Transport to the North Atlantic and North Pacific: The Impact of African and Asian Sources. , 1990, , 59-86.		41
107	The use of Whatman 41 filters for high volume aerosol sampling. Atmospheric Environment, 1989, 23, 2861.	1.1	7
108	Nitrate in the atmospheric boundary layer of the tropical South Pacific: Implications regarding sources and transport. Journal of Atmospheric Chemistry, 1989, 8, 391-415.	1.4	48

#	Article	IF	CITATIONS
109	Comparison of oceanic and continental sources of non-sea-salt sulphate over the Pacific Ocean. Nature, 1989, 339, 685-687.	13.7	247
110	Effect of continental sources on nitrate concentrations over the Pacific Ocean. Nature, 1989, 339, 687-689.	13.7	219
111	Nonâ€seaâ€salt sulfate and nitrate in trade wind aerosols at Barbados: Evidence for longâ€range transport. Journal of Geophysical Research, 1989, 94, 5069-5080.	3.3	167
112	Neodymium isotopes as tracers in marine sediments and aerosols: North Atlantic. Earth and Planetary Science Letters, 1988, 87, 367-378.	1.8	218
113	Aerosol residence times and iodine gas/particle conversion over the North Pacific as determined from Chernobyl radioactivity Geochemical Journal, 1988, 22, 157-163.	0.5	29
114	Atmospheric selenium: Geographical distribution and ocean to atmosphere flux in the Pacific. Journal of Geophysical Research, 1987, 92, 13277-13287.	3.3	43
115	Deposition rate of particulate and dissolved aluminum derived from saharan dust in precipitation at Miami, Florida. Journal of Geophysical Research, 1987, 92, 14723-14731.	3.3	159
116	Spatial and diel variability in the emissions of some biogenic sulfur compounds from a Florida Spartinaalterniflora coastal zone. Atmospheric Environment, 1987, 21, 987-990.	1.1	27
117	Short-term variability in biogenic sulphur emissions from a florida spartina alterniflora marsh. Atmospheric Environment, 1987, 21, 7-12.	1.1	56
118	Washout ratios of nitrate, non-sea-salt sulfate and sea-salt on Virginia key, Florida and on American Samoa. Atmospheric Environment, 1987, 21, 103-112.	1.1	33
119	Frequency distribution of dust concentration in Barbados as a function of averaging time. Atmospheric Environment, 1987, 21, 1659-1663.	1.1	11
120	Dynamics and composition of particles from an aeolian input event to the Sargasso Sea. Journal of Geophysical Research, 1986, 91, 1055-1066.	3.3	41
121	Methanesulfonic acid and non-sea-salt sulfate in pacific air: Regional and seasonal variations. Journal of Atmospheric Chemistry, 1986, 4, 227-240.	1.4	163
122	Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds. Nature, 1986, 320, 735-738.	13.7	418
123	Deposition of atmospheric mineral particles in the North Pacific Ocean. Journal of Atmospheric Chemistry, 1985, 3, 123-138.	1.4	214
124	Major Asian aeolian inputs indicated by the mineralogy of aerosols and sediments in the western North Pacific. Nature, 1985, 314, 84-86.	13.7	141
125	Palaeoclimatology: Records of past continental climates in deep-sea sediments. Nature, 1985, 315, 279-280.	13.7	17
126	Magnetic differentiation of atmospheric dusts. Nature, 1985, 317, 516-518.	13.7	101

#	Article	IF	CITATIONS
127	The Deposition of Sulfur and Nitrogen from the Remote Atmosphere Working-Group Report. , 1985, , 177-200.		3
128	Deposition of Atmospheric Mineral Particles in the North Pacific Ocean. , 1985, , 121-136.		0
129	Transport of mineral aerosol from Asia Over the North Pacific Ocean. Journal of Geophysical Research, 1983, 88, 5343-5352.	3.3	522
130	Particle size distribution of nitrate and sulfate in the marine atmosphere. Geophysical Research Letters, 1982, 9, 1207-1210.	1.5	215
131	Saharan air outbreaks over the tropical North Atlantic. Pure and Applied Geophysics, 1981, 119, 677-691.	0.8	110
132	Atmospheric transport of soil dust from Africa to South America. Nature, 1981, 289, 570-572.	13.7	499
133	Arid regions as sources of mineral aerosols in the marine atmosphere. Special Paper of the Geological Society of America, 1981, , 71-86.	0.5	61
134	Saharan aerosols over the tropical North Atlantic — Mineralogy. Marine Geology, 1980, 37, 295-321.	0.9	387
135	Hydrogen sulfide in the atmosphere of the northern equatorial Atlantic Ocean and its relation to the global sulfur cycle. Atmospheric Environment, 1978, 12, 981-991.	1.1	63
136	The Large-Scale Movement of Saharan Air Outbreaks over the Northern Equatorial Atlantic. Journal of Applied Meteorology, 1972, 11, 283-297.	1.1	592
137	Uranium and thorium concentrations in wind-borne Saharan dust over the Western Equatorial North Atlantic Ocean. Earth and Planetary Science Letters, 1972, 14, 397-402.	1.8	23
138	Working symposium on sea-air chemistry: Summary and recommendations. Journal of Geophysical Research, 1972, 77, 5059-5061.	3.3	33
139	Vertical and areal distribution of Saharan dust over the western equatorial north Atlantic Ocean. Journal of Geophysical Research, 1972, 77, 5255-5265.	3.3	553
140	Dust in the Caribbean atmosphere traced to an African dust storm. Earth and Planetary Science Letters, 1970, 9, 287-293.	1.8	199
141	Continental dust in the atmosphere of the Eastern Equatorial Pacific. Journal of Geophysical Research, 1969, 74, 3362-3371.	3.3	111