List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8907592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Winter mixing accelerates decomposition of sedimentary organic carbon in seasonally hypoxic coastal seas. Geochimica Et Cosmochimica Acta, 2022, 317, 457-471.	3.9	11
2	Best Practice Data Standards for Discrete Chemical Oceanographic Observations. Frontiers in Marine Science, 2022, 8, .	2.5	16
3	High anti-interference ability induced by the SP/SiOx/ImIL composite film on IrOx pH electrodes. Analytica Chimica Acta, 2022, 1197, 339489.	5.4	1
4	Rapid Acidification of the Arctic Chukchi Sea Waters Driven by Anthropogenic Forcing and Biological Carbon Recycling. Geophysical Research Letters, 2022, 49, .	4.0	13
5	Performance evaluations and applications of a δ13C-DIC analyzer in seawater and estuarine waters. Science of the Total Environment, 2022, , 155013.	8.0	0
6	Ocean Ventilation Controls the Contrasting Anthropogenic CO ₂ Uptake Rates Between the Western and Eastern South Atlantic Ocean Basins. Global Biogeochemical Cycles, 2022, 36, .	4.9	5
7	Seasonal and Spatial Production Patterns of Dissolved Inorganic Carbon and Total Alkalinity in a Shallow Beach Aquifer. Frontiers in Marine Science, 2022, 9, .	2.5	3
8	Wastewater alkalinity addition as a novel approach for ocean negative carbon emissions. Innovation(China), 2022, 3, 100272.	9.1	5
9	Extreme Nitrate Deficits in the Western Arctic Ocean: Origin, Decadal Changes, and Implications for Denitrification on a Polar Marginal Shelf. Global Biogeochemical Cycles, 2022, 36, .	4.9	9
10	Carbonate Parameter Estimation and Its Application in Revealing Temporal and Spatial Variation in the South and Midâ€Atlantic Bight, USA. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	4
11	Natural and Anthropogenic Drivers of Acidification in Large Estuaries. Annual Review of Marine Science, 2021, 13, 23-55.	11.6	68
12	Climate and Human-Driven Variability of Summer Hypoxia on a Large River-Dominated Shelf as Revealed by a Hypoxia Index. Frontiers in Marine Science, 2021, 8, .	2.5	12
13	Carbon Isotopic and Lithologic Constraints on the Sources and Cycling of Inorganic Carbon in Four Large Rivers in China: Yangtze, Yellow, Pearl, and Heilongjiang. Journal of Geophysical Research C: Biogeosciences, 2021, 126, e2020JG005901.	3.0	8
14	Seasonal Mixing and Biological Controls of the Carbonate System in a River-Dominated Continental Shelf Subject to Eutrophication and Hypoxia in the Northern Gulf of Mexico. Frontiers in Marine Science, 2021, 8, .	2.5	10
15	Summertime Evolution of Net Community Production and CO ₂ Flux in the Western Arctic Ocean. Global Biogeochemical Cycles, 2021, 35, e2020GB006651.	4.9	18
16	Correcting a major error in assessing organic carbon pollution in natural waters. Science Advances, 2021, 7, .	10.3	37
17	Freshening leads to a three-decade trend of declining nutrients in the western Arctic Ocean. Environmental Research Letters, 2021, 16, 054047.	5.2	19
18	Coastal Ocean Data Analysis Product in North America (CODAP-NA) – an internally consistent data product for discrete inorganic carbon, oxygen, and nutrients on the North American ocean margins. Earth System Science Data, 2021, 13, 2777-2799.	9.9	14

#	Article	IF	CITATIONS
19	Moderate nutrient concentrations are not detrimental to corals under future ocean conditions. Marine Biology, 2021, 168, 1.	1.5	12
20	The Mid-Atlantic Bight Dissolved Inorganic Carbon System Observed in the March 1996 DOE Ocean Margins Program (OMP)—A Baseline Study. Frontiers in Marine Science, 2021, 8, .	2.5	1
21	Why are Surface Ocean pH and CaCO ₃ Saturation State Often out of Phase in Spatial Patterns and Seasonal Cycles?. Global Biogeochemical Cycles, 2021, 35, e2021GB006949.	4.9	13
22	Greenland Blocking Promotes Subtropical North Atlantic Spring Blooms. Geophysical Research Letters, 2021, 48, e2020GL092252.	4.0	1
23	Increase in CO ₂ Uptake Capacity in the Arctic Chukchi Sea During Summer Revealed by Satelliteâ€Based Estimation. Geophysical Research Letters, 2021, 48, e2021GL093844.	4.0	12
24	Carbonate chemistry variability in the southern Yellow Sea and East China Sea during spring of 2017 and summer of 2018. Science of the Total Environment, 2021, 779, 146376.	8.0	10
25	Monitoring Ocean Acidification within State Borders: Lessons from Washington State (USA). Coastal Management, 2021, 49, 487-509.	2.0	3
26	Supplyâ€controlled calcium carbonate dissolution decouples the seasonal dissolved oxygen and <scp>pH</scp> minima in Chesapeake Bay. Limnology and Oceanography, 2021, 66, 3796-3810.	3.1	8
27	Contrasting Controls of Acidification Metrics Across Environmental Gradients in the North Pacific and the Adjunct Arctic Ocean: Insight From a Transregional Study. Geophysical Research Letters, 2021, 48, e2021GL094473.	4.0	6
28	The role of Mg2+ in inhibiting CaCO3 precipitation from seawater. Marine Chemistry, 2021, 237, 104036.	2.3	31
29	Responses of the marine carbonate system to a green tide: A case study of an Ulva prolifera bloom in Qingdao coastal waters. Harmful Algae, 2021, 110, 102133.	4.8	13
30	Changing riverine organic C:N ratios along the Pearl River: Implications for estuarine and coastal carbon cycles. Science of the Total Environment, 2020, 709, 136052.	8.0	31
31	Surface seawater partial pressure of CO2 variability and air-sea CO2 fluxes in the Bering Sea in July 2010. Continental Shelf Research, 2020, 193, 104031.	1.8	10
32	Increased extreme precipitation challenges nitrogen load management to the Gulf of Mexico. Communications Earth & Environment, 2020, 1, .	6.8	36
33	Purified meta-Cresol Purple dye perturbation: How it influences spectrophotometric pH measurements. Marine Chemistry, 2020, 225, 103849.	2.3	9
34	Effects of Wind-Driven Lateral Upwelling on Estuarine Carbonate Chemistry. Frontiers in Marine Science, 2020, 7, .	2.5	13
35	Seasonal variations in strontium and carbon isotope systematics in the Lower Mississippi River: Implications for chemical weathering. Chemical Geology, 2020, 553, 119810.	3.3	10
36	Acidification in the U.S. Southeast: Causes, Potential Consequences and the Role of the Southeast Ocean and Coastal Acidification Network. Frontiers in Marine Science, 2020, 7, 1-548.	2.5	222

#	Article	IF	CITATIONS
37	Autonomous Observation of Seasonal Carbonate Chemistry Dynamics in the Midâ€Atlantic Bight. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016505.	2.6	12
38	Benthic Respiration in Hypoxic Waters Enhances Bottom Water Acidification in the Northern Gulf of Mexico. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016152.	2.6	6
39	Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling. Nature Geoscience, 2020, 13, 441-447.	12.9	44
40	Sea-ice loss amplifies summertime decadal CO2 increase in the western Arctic Ocean. Nature Climate Change, 2020, 10, 678-684.	18.8	40
41	Controls on surface water carbonate chemistry along North American ocean margins. Nature Communications, 2020, 11, 2691.	12.8	77
42	Understanding Anthropogenic Impacts on pH and Aragonite Saturation State in Chesapeake Bay: Insights From a 30â€Year Model Study. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005620.	3.0	20
43	Longâ€Term Changes of Carbonate Chemistry Variables Along the North American East Coast. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015982.	2.6	22
44	Source partitioning of oxygen onsuming organic matter in the hypoxic zone of the Chesapeake Bay. Limnology and Oceanography, 2020, 65, 1801-1817.	3.1	20
45	The ebb and flow of protons: A novel approach for the assessment of estuarine and coastal acidification. Estuarine, Coastal and Shelf Science, 2020, 236, 106627.	2.1	7
46	Longâ€Term Trajectory of Nitrogen Loading and Delivery From Mississippi River Basin to the Gulf of Mexico. Global Biogeochemical Cycles, 2020, 34, e2019GB006475.	4.9	44
47	Total alkalinity minus dissolved inorganic carbon as a proxy for deciphering ocean acidification mechanisms. Marine Chemistry, 2020, 222, 103791.	2.3	28
48	Seasonal and spatial variability in surface <scp><i>p</i>CO₂</scp> and air–water <scp>CO₂</scp> flux in the Chesapeake Bay. Limnology and Oceanography, 2020, 65, 3046-3065.	3.1	16
49	Ecosystem Metabolism and Carbon Balance in Chesapeake Bay: A 30‥ear Analysis Using a Coupled Hydrodynamicâ€Biogeochemical Model. Journal of Geophysical Research: Oceans, 2019, 124, 6141-6153.	2.6	34
50	Physical and Biogeochemical Controls on pH Dynamics in the Northern Gulf of Mexico During Summer Hypoxia. Journal of Geophysical Research: Oceans, 2019, 124, 5979-5998.	2.6	19
51	Simultaneous determination of dissolved inorganic carbon (DIC) concentration and stable isotope (δ13C-DIC) by Cavity Ring-Down Spectroscopy: Application to study carbonate dynamics in the Chesapeake Bay. Marine Chemistry, 2019, 215, 103689.	2.3	11
52	Hypoxic Bottom Waters as a Carbon Source to Atmosphere During a Typhoon Passage Over the East China Sea. Geophysical Research Letters, 2019, 46, 11329-11337.	4.0	18
53	The Development and Validation of a Profiling Glider Deep ISFET-Based pH Sensor for High Resolution Observations of Coastal and Ocean Acidification. Frontiers in Marine Science, 2019, 6, .	2.5	23
54	A machine learning approach to estimate surface ocean pCO2 from satellite measurements. Remote Sensing of Environment, 2019, 228, 203-226.	11.0	79

#	Article	IF	CITATIONS
55	Time of Emergence of Surface Ocean Carbon Dioxide Trends in the North American Coastal Margins in Support of Ocean Acidification Observing System Design. Frontiers in Marine Science, 2019, 6, .	2.5	18
56	Estimating summer sea surface pCO2 on a river-dominated continental shelf using a satellite-based semi-mechanistic model. Remote Sensing of Environment, 2019, 225, 115-126.	11.0	13
57	Chesapeake Bay Inorganic Carbon: Spatial Distribution and Seasonal Variability. Frontiers in Marine Science, 2019, 6, .	2.5	36
58	Wind-driven lateral variations of partial pressure of carbon dioxide in a large estuary. Journal of Marine Systems, 2019, 195, 67-73.	2.1	6
59	Spring net community production and its coupling with the CO ₂ dynamics in the surface water of the northern Gulf of Mexico. Biogeosciences, 2019, 16, 3507-3525.	3.3	11
60	Controls on Carbonate System Dynamics in a Coastal Plain Estuary: A Modeling Study. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 61-78.	3.0	51
61	Coral responses to ocean warming and acidification: Implications for future distribution of coral reefs in the South China Sea. Marine Pollution Bulletin, 2019, 138, 241-248.	5.0	22
62	Biological regulation of pH during intensive growth of phytoplankton in two eutrophic estuarine waters. Marine Ecology - Progress Series, 2019, 609, 87-99.	1.9	9
63	Autonomous seawater <i>p</i> CO ₂ and pH time series from 40 surface buoys and the emergence of anthropogenic trends. Earth System Science Data, 2019, 11, 421-439.	9.9	69
64	Carbon Budget of Tidal Wetlands, Estuaries, and Shelf Waters of Eastern North America. Global Biogeochemical Cycles, 2018, 32, 389-416.	4.9	147
65	Satellite estimation of coastal pCO2 and air-sea flux of carbon dioxide in the northern Gulf of Mexico. Remote Sensing of Environment, 2018, 207, 71-83.	11.0	42
66	Treated Wastewater Changes the Export of Dissolved Inorganic Carbon and Its Isotopic Composition and Leads to Acidification in Coastal Oceans. Environmental Science & Technology, 2018, 52, 5590-5599.	10.0	35
67	Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nature Communications, 2018, 9, 454.	12.8	112
68	Biological regulation of carbonate chemistry during diatom growth under different concentrations of Ca2+ and Mg2+. Marine Chemistry, 2018, 203, 38-48.	2.3	6
69	Assessment of the suitability of Durafet-based sensors for pH measurement in dynamic estuarine environments. Estuarine, Coastal and Shelf Science, 2018, 200, 152-168.	2.1	20
70	The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico. Continental Shelf Research, 2018, 152, 50-60.	1.8	94
71	Inorganic carbon and oxygen dynamics in a marshâ€dominated estuary. Limnology and Oceanography, 2018, 63, 47-71.	3.1	29
72	Developing a profiling glider pH sensor for high resolution coastal ocean acidification monitoring. , 2018, , .		9

5

#	Article	IF	CITATIONS
73	Quantitative interpretation of vertical profiles of calcium and pH in the coral coelenteron. Marine Chemistry, 2018, 204, 62-69.	2.3	11
74	Effects of Biological Production and Vertical Mixing on Sea Surface <i>p</i> CO ₂ Variations in the Changjiang River Plume During Early Autumn: A Buoyâ€Based Time Series Study. Journal of Geophysical Research: Oceans, 2018, 123, 6156-6173.	2.6	17
75	Spatial and Temporal Variability of <i>p</i> CO ₂ , Carbon Fluxes, and Saturation State on the West Florida Shelf. Journal of Geophysical Research: Oceans, 2018, 123, 6174-6188.	2.6	16
76	Climatic modulation of surface acidification rates through summertime wind forcing in the Southern Ocean. Nature Communications, 2018, 9, 3240.	12.8	17
77	Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS ONE, 2018, 13, e0191156.	2.5	158
78	Eutrophicationâ€induced acidification of coastal waters in the northern Gulf of Mexico: Insights into origin and processes from a coupled physicalâ€biogeochemical model. Geophysical Research Letters, 2017, 44, 946-956.	4.0	89
79	Increase in acidifying water in the western ArcticÂOcean. Nature Climate Change, 2017, 7, 195-199.	18.8	101
80	Shortâ€ŧerm variability of aragonite saturation state in the central <scp>M</scp> idâ€ <scp>A</scp> tlantic <scp>B</scp> ight. Journal of Geophysical Research: Oceans, 2017, 122, 4274-4290.	2.6	24
81	Effects of eutrophication and benthic respiration on water column carbonate chemistry in a traditional hypoxic zone in the Northern Gulf of Mexico. Marine Chemistry, 2017, 194, 33-42.	2.3	27
82	Sea surface aragonite saturation state variations and control mechanisms at the Gray's Reef time-series site off Georgia, USA (2006–2007). Marine Chemistry, 2017, 195, 27-40.	2.3	32
83	Diatom bloomâ€derived bottom water hypoxia off the Changjiang estuary, with and without typhoon influence. Limnology and Oceanography, 2017, 62, 1552-1569.	3.1	101
84	Decadal <i>f</i> CO ₂ trends in global ocean margins and adjacent boundary currentâ€influenced areas. Geophysical Research Letters, 2017, 44, 8962-8970.	4.0	26
85	Spatial Patterns of Groundwater Biogeochemical Reactivity in an Intertidal Beach Aquifer. Journal of Geophysical Research C: Biogeosciences, 2017, 122, 2548-2562.	3.0	81
86	Agents of change and temporal nutrient dynamics in the Altamaha River Watershed. Ecosphere, 2017, 8, e01519.	2.2	7
87	Estimating surface pCO2 in the northern Gulf of Mexico: Which remote sensing model to use?. Continental Shelf Research, 2017, 151, 94-110.	1.8	17
88	Multidecadal <i>f</i> CO ₂ Increase Along the United States Southeast Coastal Margin. Journal of Geophysical Research: Oceans, 2017, 122, 10061-10072.	2.6	19
89	Ocean carbonate system computation for anoxic waters using an updated CO2SYS program. Marine Chemistry, 2017, 195, 90-93.	2.3	30
90	Time series pCO2 at a coastal mooring: Internal consistency, seasonal cycles, and interannual variability. Continental Shelf Research, 2017, 145, 95-108.	1.8	18

#	Article	IF	CITATIONS
91	Coral calcification under environmental change: a direct comparison of the alkalinity anomaly and buoyant weight techniques. Coral Reefs, 2017, 36, 13-25.	2.2	14
92	Air–water CO ₂ evasion from US East Coast estuaries. Biogeosciences, 2017, 14, 2441-2468.	3.3	27
93	Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay. Nature Communications, 2017, 8, 369.	12.8	128
94	Seasonal variability of the inorganic carbon system in a large coastal plain estuary. Biogeosciences, 2017, 14, 4949-4963.	3.3	48
95	Coupled oxygen and dissolved inorganic carbon dynamics in coastal ocean and its use as a potential indicator for detecting water column oil degradation. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 129, 311-318.	1.4	10
96	Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds. Biogeosciences, 2016, 13, 5065-5083.	3.3	60
97	Modeling <i>p</i> CO ₂ variability in the Gulf of Mexico. Biogeosciences, 2016, 13, 4359-4377.	3.3	21
98	Remote Sensing of Sea Surface pCO2 in the Bering Sea in Summer Based on a Mechanistic Semi-Analytical Algorithm (MeSAA). Remote Sensing, 2016, 8, 558.	4.0	20
99	Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nature Communications, 2016, 7, 11144.	12.8	115
100	Consumption of atmospheric CO2 via chemical weathering in the Yellow River basin: The Qinghai–Tibet Plateau is the main contributor to the high dissolved inorganic carbon in the Yellow River. Chemical Geology, 2016, 430, 34-44.	3.3	41
101	High-temperature acclimation strategies within the thermally tolerant endosymbiont Symbiodinium trenchii and its coral host, Turbinaria reniformis, differ with changing pCO 2 and nutrients. Marine Biology, 2016, 163, 1.	1.5	14
102	Calcification of the planktonic foraminifera <scp><i>Globigerina bulloides</i></scp> and carbonate ion concentration: Results from the Santa Barbara Basin. Paleoceanography, 2016, 31, 1083-1102.	3.0	30
103	Centuryâ€long increasing trend and variability of dissolved organic carbon export from the Mississippi River basin driven by natural and anthropogenic forcing. Global Biogeochemical Cycles, 2016, 30, 1288-1299.	4.9	53
104	Eutrophication-Driven Hypoxia in the East China Sea off the Changjiang Estuary. Environmental Science & Technology, 2016, 50, 2255-2263.	10.0	184
105	Aragonite saturation state in a monsoonal upwelling system off Java, Indonesia. Journal of Marine Systems, 2016, 153, 10-17.	2.1	19
106	Sea surface carbon dioxide at the Georgia time series site (2006–2007): Air–sea flux and controlling processes. Progress in Oceanography, 2016, 140, 14-26.	3.2	66
107	A multi-decade record of high-quality <i>f</i> CO ₂ data in version 3 of the Surface Ocean CO ₂ Atlas (SOCAT). Earth System Science Data, 2016. 8. 383-413.	9.9	413
108	Climate extremes dominating seasonal and interannual variations in carbon export from the Mississippi River Basin. Global Biogeochemical Cycles, 2015, 29, 1333-1347.	4.9	46

#	Article	lF	CITATIONS
109	A mechanistic semiâ€analytical method for remotely sensing sea surface <i>p</i> <scp>CO</scp> ₂ in riverâ€dominated coastal oceans: A case study from the <scp>E</scp> ast <scp>C</scp> hina <scp>S</scp> ea. Journal of Geophysical Research: Oceans, 2015, 120, 2331-2349.	2.6	69
110	Physiological response to elevated temperature and pCO2 varies across four Pacific coral species: Understanding the unique host+symbiont response. Scientific Reports, 2015, 5, 18371.	3.3	72
111	Response of sea surface fugacity of CO ₂ to the SAM shift south of Tasmania: Regional differences. Geophysical Research Letters, 2015, 42, 3973-3979.	4.0	20
112	Seaâ€air CO ₂ exchange in the western Arctic coastal ocean. Global Biogeochemical Cycles, 2015, 29, 1190-1209.	4.9	39
113	And on Top of All That… Coping with Ocean Acidification in the Midst of Many Stressors. Oceanography, 2015, 25, 48-61.	1.0	143
114	Large increase in dissolved inorganic carbon flux from the Mississippi River to Gulf of Mexico due to climatic and anthropogenic changes over the 21st century. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 724-736.	3.0	38
115	Air–water fluxes and sources of carbon dioxide in the Delaware Estuary: spatial and seasonal variability. Biogeosciences, 2015, 12, 6085-6101.	3.3	67
116	Organic carbon fluxes mediated by corals at elevated pCO2 and temperature. Marine Ecology - Progress Series, 2015, 519, 153-164.	1.9	27
117	Temporal variation and stoichiometric ratios of organic matter remineralization in bottom waters of the northern <scp>G</scp> ulf of <scp>M</scp> exico during late spring and summer. Journal of Geophysical Research: Oceans, 2015, 120, 8304-8326.	2.6	15
118	The carbon dioxide system on the <scp>M</scp> ississippi <scp>R</scp> iverâ€dominated continental shelf in the northern <scp>G</scp> ulf of <scp>M</scp> exico: 1. Distribution and airâ€sea CO ₂ flux. Journal of Geophysical Research: Oceans, 2015, 120, 1429-1445.	2.6	72
119	Net ecosystem production and organic carbon balance of U.S. East Coast estuaries: A synthesis approach. Global Biogeochemical Cycles, 2015, 29, 96-111.	4.9	93
120	Ocean acidification along the Gulf Coast and East Coast of the USA. Continental Shelf Research, 2015, 98, 54-71.	1.8	96
121	Internal consistency of marine carbonate system measurements and assessments of aragonite saturation state: Insights from two U.S. coastal cruises. Marine Chemistry, 2015, 176, 9-20.	2.3	47
122	An Ultrahigh Precision, High-Frequency Dissolved Inorganic Carbon Analyzer Based on Dual Isotope Dilution and Cavity Ring-Down Spectroscopy. Environmental Science & Technology, 2015, 49, 8602-8610.	10.0	10
123	The marine carbonate system of the Arctic Ocean: Assessment of internal consistency and sampling considerations, summer 2010. Marine Chemistry, 2015, 176, 174-188.	2.3	48
124	The response of inorganic carbon distributions and dynamics to upwelling-favorable winds on the northern Gulf of Mexico during summer. Continental Shelf Research, 2015, 111, 211-222.	1.8	29
125	Eutrophication-Driven Deoxygenation in the Coastal Ocean. Oceanography, 2014, 27, 172-183.	1.0	245
126	Calibration and evaluation of a carbonate microsensor for studies of the marine inorganic carbon system. Journal of Oceanography, 2014, 70, 425-433.	1.7	16

#	Article	IF	CITATIONS
127	Summertime Changjiang River plume variation during 1998–2010. Journal of Geophysical Research: Oceans, 2014, 119, 6238-6257.	2.6	88
128	Increasing Mississippi river discharge throughout the 21st century influenced by changes in climate, land use, and atmospheric CO ₂ . Geophysical Research Letters, 2014, 41, 4978-4986.	4.0	96
129	Precise determination of seawater calcium using isotope dilution inductively coupled plasma mass spectrometry. Analyst, The, 2014, 139, 734.	3.5	6
130	Distributions and air-sea fluxes of CO2 in the summer Bering Sea. Acta Oceanologica Sinica, 2014, 33, 1-8.	1.0	111
131	The spatiotemporal distribution of dissolved inorganic and organic carbon in the main stem of the Changjiang (Yangtze) River and the effect of the Three Gorges Reservoir. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 741-757.	3.0	79
132	Removal of dissolved inorganic carbon in the Yellow River Estuary. Limnology and Oceanography, 2014, 59, 413-426.	3.1	41
133	Carbon Fluxes Across Boundaries in the Pacific Arctic Region in a Changing Environment. , 2014, , 199-222.		10
134	Carbon Biogeochemistry of the Western Arctic: Primary Production, Carbon Export and the Controls on Ocean Acidification. , 2014, , 223-268.		15
135	An update to the Surface Ocean CO ₂ Atlas (SOCAT version 2). Earth System Science Data, 2014, 6, 69-90.	9.9	158
136	Longâ€ŧerm trends in evapotranspiration and runoff over the drainage basins of the Gulf of Mexico during 1901–2008. Water Resources Research, 2013, 49, 1988-2012.	4.2	90
137	The changing carbon cycle of the coastal ocean. Nature, 2013, 504, 61-70.	27.8	1,146
138	Surface ocean <i>p</i> CO ₂ seasonality and sea-air CO ₂ flux estimates for the North American east coast. Journal of Geophysical Research: Oceans, 2013, 118, 5439-5460.	2.6	87
139	Remote sensing of salinity from satelliteâ€derived CDOM in the Changjiang River dominated East China Sea. Journal of Geophysical Research: Oceans, 2013, 118, 227-243.	2.6	106
140	The marine inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States: Insights from a transregional coastal carbon study. Limnology and Oceanography, 2013, 58, 325-342.	3.1	141
141	Effects of a wind-driven cross-shelf large river plume on biological production and CO2 uptake on the Gulf of Mexico during spring. Limnology and Oceanography, 2013, 58, 1727-1735.	3.1	41
142	Estuarine acidification and minimum buffer zone—A conceptual study. Geophysical Research Letters, 2013, 40, 5176-5181.	4.0	56
143	Sediment, organic carbon, nutrients, and trace elements: sources, transport, and biogeochemical cycles in the lowermost Mississippi River. , 2013, , 397-420.		4
144	Modeling ocean circulation and biogeochemical variability in the Gulf of Mexico. Biogeosciences, 2013, 10, 7219-7234.	3.3	70

#	Article	IF	CITATIONS
145	Physical dynamics and biogeochemistry of the Pearl River plume. , 2013, , 321-352.		16
146	Seasonality of CO ₂ in coastal oceans altered by increasing anthropogenic nutrient delivery from large rivers: evidence from the Changjiang–East China Sea system. Biogeosciences, 2013, 10, 3889-3899.	3.3	40
147	Impact of human activities on organic carbon transport in the Yellow River. Biogeosciences, 2013, 10, 2513-2524.	3.3	103
148	Nutrient and carbon dynamics in a large river-dominated coastal ecosystem: the Mississippi-Atchafalaya River system. , 2013, , 448-472.		7
149	Seasonal variations of sea–air CO ₂ fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway measurements. Biogeosciences, 2013, 10, 7775-7791.	3.3	77
150	Influence of terrestrial inputs on continental shelf carbon dioxide. Biogeosciences, 2013, 10, 839-849.	3.3	34
151	Water and sediment dynamics through the wetlands and coastal water bodies of large river deltaic plains. , 2013, , 21-54.		2
152	Carbon dioxide dynamics and fluxes in coastal waters influenced by river plumes. , 2013, , 155-173.		14
153	Sedimentary carbon dynamics of the Atchafalaya and Mississippi River Delta system and associated margin. , 2013, , 473-502.		2
154	Composition and fluxes of carbon and nutrient species from the Yukon River basin in a changing environment. , 2013, , 503-529.		2
155	Coral Energy Reserves and Calcification in a High-CO2 World at Two Temperatures. PLoS ONE, 2013, 8, e75049.	2.5	137
156	A uniform, quality controlled Surface Ocean CO ₂ Atlas (SOCAT). Earth System Science Data, 2013, 5, 125-143.	9.9	158
157	Surface Ocean CO ₂ Atlas (SOCAT) gridded data products. Earth System Science Data, 2013, 5, 145-153.	9.9	101
158	GEOCHEMICAL CONTROLS ON CARBONATE SHELL TAPHONOMY IN NORTHERN GULF OF MEXICO CONTINENTAL SHELF AND SLOPE SEDIMENTS. Palaios, 2012, 27, 571-584.	1.3	13
159	Assessment of sample storage techniques for total alkalinity and dissolved inorganic carbon in seawater. Limnology and Oceanography: Methods, 2012, 10, 711-717.	2.0	97
160	Carbon dynamics and community production in the Mississippi River plume. Limnology and Oceanography, 2012, 57, 1-17.	3.1	94
161	Eutrophication Induced CO ₂ -Acidification of Subsurface Coastal Waters: Interactive Effects of Temperature, Salinity, and Atmospheric <i>P</i> _{CO₂} . Environmental Science & Technology, 2012, 46, 10651-10659.	10.0	197
162	Spatial distribution of riverine DOC inputs to the ocean: an updated global synthesis. Current Opinion in Environmental Sustainability, 2012, 4, 170-178.	6.3	201

#	Article	IF	CITATIONS
163	Carbon sequestration in wetland dominated coastal systems—a global sink of rapidly diminishing magnitude. Current Opinion in Environmental Sustainability, 2012, 4, 186-194.	6.3	193
164	Distributions and air–sea fluxes of carbon dioxide in the Western Arctic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 81-84, 46-52.	1.4	22
165	Biogeochemical studies from the Chinese National Arctic Research Expeditions (CHINAREs). Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 81-84, 1-2.	1.4	1
166	The stoichiometry of inorganic carbon and nutrient removal in the Mississippi River plume and adjacent continental shelf. Biogeosciences, 2012, 9, 2781-2792.	3.3	31
167	An assessment of ocean margin anaerobic processes on oceanic alkalinity budget. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	108
168	CO ₂ uptake in the East China Sea relying on Changjiang runoff is prone to change. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	51
169	Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience, 2011, 4, 766-770.	12.9	928
170	Air–sea CO2 fluxes in the southern Yellow Sea: An examination of the continental shelf pump hypothesis. Continental Shelf Research, 2011, 31, 1904-1914.	1.8	30
171	Geochemical environments of continental shelf-upper slope sediments in the northern Gulf of Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 312, 265-277.	2.3	7
172	Estuarine and Coastal Ocean Carbon Paradox: CO ₂ Sinks or Sites of Terrestrial Carbon Incineration?. Annual Review of Marine Science, 2011, 3, 123-145.	11.6	669
173	Influence of seasonal monsoons on net community production and CO ₂ in subtropical Hong Kong coastal waters. Biogeosciences, 2011, 8, 289-300.	3.3	25
174	The Ocean Carbon Cycle in the Western Arctic Ocean: Distributions and Air-Sea Fluxes of Carbon Dioxide. Oceanography, 2011, 24, 186-201.	1.0	53
175	On the calculation of eddy diffusivity in the shelf water from radium isotopes: High sensitivity to advection. Journal of Marine Systems, 2011, 86, 28-33.	2.1	23
176	CO2 system in the oligotrophic northwest Pacific Ocean during the Asian dust storm season. Marine Chemistry, 2011, 127, 210-222.	2.3	5
177	The impact of denitrification on the atmospheric CO2 uptake potential of seawater. Marine Chemistry, 2011, 127, 192-198.	2.3	16
178	Carbon Cycling and the Coupling Between Proton and Electron Transfer Reactions in Aquatic Sediments in Lake Champlain. Aquatic Geochemistry, 2010, 16, 421-446.	1.3	37
179	Pelagic community respiration on the continental shelf off Georgia, USA. Biogeochemistry, 2010, 98, 101-113.	3.5	23
180	Pore-water geochemistry of two contrasting brine-charged seep sites in the northern Gulf of Mexico continental slope. Marine Chemistry, 2010, 118, 99-107.	2.3	18

#	Article	IF	CITATIONS
181	Carbonate mineral saturation states along the U.S. East Coast. Limnology and Oceanography, 2010, 55, 2424-2432.	3.1	30
182	Alkalinity distribution in the western North Atlantic Ocean margins. Journal of Geophysical Research, 2010, 115, .	3.3	155
183	Seasonal variability in airâ€sea fluxes of CO ₂ in a riverâ€influenced coastal margin. Journal of Geophysical Research, 2010, 115, .	3.3	54
184	Decrease in the CO ₂ Uptake Capacity in an Ice-Free Arctic Ocean Basin. Science, 2010, 329, 556-559.	12.6	218
185	Bacterial production and respiration in subtropical Hong Kong waters: influence of the Pearl River discharge and sewage effluent. Aquatic Microbial Ecology, 2010, 58, 167-179.	1.8	29
186	Coupling of surface <i>p</i> CO ₂ and dissolved oxygen in the northern South China Sea: impacts of contrasting coastal processes. Biogeosciences, 2009, 6, 2589-2598.	3.3	48
187	CO ₂ flux and seasonal variability in a large subtropical estuarine system, the Pearl River Estuary, China. Journal of Geophysical Research, 2009, 114, .	3.3	90
188	Diurnal variations of surface seawater pCO2 in contrasting coastal environments. Limnology and Oceanography, 2009, 54, 735-745.	3.1	109
189	Airâ€sea CO ₂ fluxes on the U.S. South Atlantic Bight: Spatial and seasonal variability. Journal of Geophysical Research, 2008, 113, .	3.3	119
190	The carbon dioxide system and net community production within a cyclonic eddy in the lee of Hawaii. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 1412-1425.	1.4	12
191	Effects of an estuarine plume-associated bloom on the carbonate system in the lower reaches of the Pearl River estuary and the coastal zone of the northern South China Sea. Continental Shelf Research, 2008, 28, 1416-1423.	1.8	130
192	A retrospective analysis of nutrients and phytoplankton productivity in the Mississippi River plume. Continental Shelf Research, 2008, 28, 1466-1475.	1.8	109
193	Seasonal variations in the inorganic carbon system in the Pearl River (Zhujiang) estuary. Continental Shelf Research, 2008, 28, 1424-1434.	1.8	91
194	A comparative overview of weathering intensity and HCO3â^' flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Continental Shelf Research, 2008, 28, 1538-1549.	1.8	203
195	Comparison of hypoxia among four river-dominated ocean margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers. Continental Shelf Research, 2008, 28, 1527-1537.	1.8	227
196	A comparative study of carbon dioxide degassing in river―and marineâ€dominated estuaries. Limnology and Oceanography, 2008, 53, 2603-2615.	3.1	170
197	Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita. Sensors, 2008, 8, 4135-4150.	3.8	30
198	Mesoscale Eddies Drive Increased Silica Export in the Subtropical Pacific Ocean. Science, 2007, 316, 1017-1021.	12.6	249

#	Article	IF	CITATIONS
199	Sea surfacepCO2-SST relationships across a cold-core cyclonic eddy: Implications for understanding regional variability and air-sea gas exchange. Geophysical Research Letters, 2007, 34, .	4.0	46
200	On some biases of estimating the global distribution of air-sea CO2flux by bulk parameterizations. Geophysical Research Letters, 2007, 34, .	4.0	12
201	Satellite ocean color assessment of air-sea fluxes of CO2in a river-dominated coastal margin. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	81
202	Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophysical Research Letters, 2006, 33, .	4.0	307
203	Preferential dissolution of carbonate shells driven by petroleum seep activity in the Gulf of Mexico. Earth and Planetary Science Letters, 2006, 248, 227-243.	4.4	43
204	Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Marine Chemistry, 2006, 102, 159-169.	2.3	216
205	Oxygen, Carbon Dioxide, and Estuarine Condition. , 2006, , 179-201.		1
206	High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China. Marine Chemistry, 2005, 93, 21-32.	2.3	209
207	The partial pressure of carbon dioxide and air–sea fluxes in the northern South China Sea in spring, summer and autumn. Marine Chemistry, 2005, 96, 87-97.	2.3	97
208	Biogeochemical characteristics of the lower Mississippi River, USA, during June 2003. Estuaries and Coasts, 2005, 28, 664-674.	1.7	47
209	The southeastern continental shelf of the United States as an atmospheric CO2 source and an exporter of inorganic carbon to the ocean. Continental Shelf Research, 2005, 25, 1917-1941.	1.8	38
210	Comment on "Enhanced Open Ocean Storage of CO2 from Shelf Sea Pumping". Science, 2004, 306, 1477c-1477c.	12.6	61
211	Photooxidation and Its Effects on the Carboxyl Content of Dissolved Organic Matter in Two Coastal Rivers in the Southeastern United States. Environmental Science & Technology, 2004, 38, 4113-4119.	10.0	120
212	The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Continental Shelf Research, 2004, 24, 1301-1319.	1.8	317
213	Carbon dioxide degassing and inorganic carbon export from a marshâ€dominated estuary (the Duplin) Tj ETQq1	1	.4 rg8t /Ove
214	Studies on the sea surface microlayer. Journal of Colloid and Interface Science, 2003, 264, 148-159.	9.4	96
215	A long pathlength liquid-core waveguide sensor for real-time pCO2 measurements at sea. Marine Chemistry, 2003, 84, 73-84.	2.3	30
216	Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume. Geophysical Research Letters, 2003, 30, .	4.0	133

#	Article	IF	CITATIONS
217	The role of marsh-dominated heterotrophic continental margins in transport of CO2between the atmosphere, the land-sea interface and the ocean. Geophysical Research Letters, 2003, 30, .	4.0	121
218	Direct determination of thickness of sea surface microlayer using a pH microelectrode at original location. Science in China Series B: Chemistry, 2003, 46, 339.	0.8	40
219	The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochimica Et Cosmochimica Acta, 2003, 67, 631-639.	3.9	163
220	The Electrochemical Detremination of Nitric Oxide in Seawater Media with Microelectrodes. Sensors, 2003, 3, 304-313.	3.8	10
221	Porewater Redox Species, pH and pCO2 in Aquatic Sediments: Electrochemical Sensor Studies in Lake Champlain and Sapelo Island. ACS Symposium Series, 2002, , 188-209.	0.5	4
222	A long pathlength spectrophotometric pCO2 sensor using a gas-permeable liquid-core waveguide. Talanta, 2002, 57, 69-80.	5.5	24
223	Degradation of algal lipids in microcosm sediments with different mixing regimes. Organic Geochemistry, 2002, 33, 445-459.	1.8	41
224	A long pathlength spectrophotometric pCO(2) sensor using a gas-permeable liquid-core waveguide. Talanta, 2002, 57, 69-80.	5.5	2
225	Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla Riverâ€estuarine complex in the southeastern U.S Limnology and Oceanography, 2000, 45, 1743-1752.	3.1	77
226	pH and pCO2 microelectrode measurements and the diffusive behavior of carbon dioxide species in coastal marine sediments. Marine Chemistry, 2000, 70, 133-148.	2.3	55
227	pH polymeric membrane microelectrodes based on neutral carriers and their application in aquatic environments. Analytica Chimica Acta, 1999, 395, 285-291.	5.4	16
228	Oxygen and carbon dioxide mass balance for the estuarineâ€intertidal marsh complex of five rivers in the southeastern U.S Limnology and Oceanography, 1999, 44, 639-649.	3.1	139
229	Acid-Base Properties of Dissolved Organic Matter in the Estuarine Waters of Georgia, USA. Geochimica Et Cosmochimica Acta, 1998, 62, 473-483.	3.9	151
230	The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnology and Oceanography, 1998, 43, 657-668.	3.1	451
231	An Improved PotentiometricpCO2Microelectrode. Analytical Chemistry, 1997, 69, 5052-5058.	6.5	53
232	Oxygen penetration depths and fluxes in marine sediments. Marine Chemistry, 1996, 52, 123-131.	2.3	203
233	Benthic oxygen flux, bottom water oxygen concentration and core top organic carbon content in the deep northeast Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42, 1681-1699.	1.4	54
234	Microelectrode studies of organic carbon degradation and calcite dissolution at a California Continental rise site. Geochimica Et Cosmochimica Acta, 1995, 59, 497-511.	3.9	101

#	Article	IF	CITATIONS
235	The development of pH and pCO2 microelectrodes for studying the carbonate chemistry of pore waters near the sediment-water interface. Limnology and Oceanography, 1993, 38, 1762-1773.	3.1	81
236	Dynamics of phytoplankton blooms and nutrient limitation in the Pearl River (Zhujiang) estuarine coastal waters. , 0, , 274-295.		1
237	Carbon biogeochemistry in the continuum of the Changjiang (Yangtze) River watersheds across the East China Sea. , 0, , 237-273.		1
238	Carbon and nutrient fluxes across tropical river-coastal boundaries. , 0, , 373-394.		4
239	An introduction to the biogeochemistry of river-coastal systems. , 0, , 3-18.		2
240	The evolution of carbon signatures carried by the Ganges-Brahmaputra river system: a source-to-sink perspective. , 0, , 353-372.		4