Peter Budd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8907226/publications.pdf

Version: 2024-02-01

132 14,525 55
papers citations h-index

137 137 137 8485
all docs docs citations times ranked citing authors

119

g-index

#	Article	IF	CITATIONS
1	Mixed matrix membranes derived from a spirobifluorene polymer of intrinsic microporosity and polyphenylene networks for the separation of toluene from dimethyl sulfoxide. Arkivoc, 2022, 2021, 120-130.	0.3	2
2	Enhancing the organophilic separations with mixed matrix membranes of PIM-1 and bimetallic Zn/Co-ZIF filler. Separation and Purification Technology, 2022, 283, 120216.	3.9	13
3	Seeking synergy in membranes: blends and mixtures with polymers of intrinsic microporosity. Current Opinion in Chemical Engineering, 2022, 36, 100792.	3.8	5
4	Advanced methods for analysis of mixed gas diffusion in polymeric membranes. Journal of Membrane Science, 2022, 648, 120356.	4.1	10
5	Sieving gases with twisty polymers. Science, 2022, 375, 1354-1355.	6.0	8
6	Novel Mixed Matrix Membranes Based on Polymer of Intrinsic Microporosity PIM-1 Modified with Metal-Organic Frameworks for Removal of Heavy Metal lons and Food Dyes by Nanofiltration. Membranes, 2022, 12, 14.	1.4	19
7	PIM-1 membranes containing POSS - graphene oxide for CO2 separation. Separation and Purification Technology, 2022, 298, 121447.	3.9	28
8	Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporation. Separation and Purification Technology, 2022, 299, 121693.	3.9	6
9	Upgrading of raw biogas using membranes based on the ultrapermeable polymer of intrinsic microporosity PIM-TMN-Trip. Journal of Membrane Science, 2021, 618, 118694.	4.1	23
10	Gas separation performance of MMMs containing (PIM-1)-functionalized GO derivatives. Journal of Membrane Science, 2021, 623, 118902.	4.1	48
11	Bridging the interfacial gap in mixed-matrix membranes by nature-inspired design: precise molecular sieving with polymer-grafted metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 23793-23801.	5.2	41
12	Recovery of free volume in PIM-1 membranes through alcohol vapor treatment. Frontiers of Chemical Science and Engineering, 2021, 15, 872-881.	2.3	13
13	Ultrapermeable Polymers of Intrinsic Microporosity Containing Spirocyclic Units with Fused Triptycenes. Advanced Functional Materials, 2021, 31, 2104474.	7.8	29
14	Influence of Polymer Topology on Gas Separation Membrane Performance of the Polymer of Intrinsic Microporosity PIM-Py. ACS Applied Polymer Materials, 2021, 3, 3485-3495.	2.0	11
15	High-Flux Thin Film Composite PIM-1 Membranes for Butanol Recovery: Experimental Study and Process Simulations. ACS Applied Materials & Early; Interfaces, 2021, 13, 42635-42649.	4.0	15
16	PEEK–WC-Based Mixed Matrix Membranes Containing Polyimine Cages for Gas Separation. Molecules, 2021, 26, 5557.	1.7	8
17	2D boron nitride nanosheets in PIM-1 membranes for CO2/CH4 separation. Journal of Membrane Science, 2021, 636, 119527.	4.1	52
18	Importance of small loops within PIM-1 topology on gas separation selectivity in thin film composite membranes. Journal of Materials Chemistry A, 2021, 9, 21807-21823.	5.2	30

#	Article	IF	CITATIONS
19	Electrospun Adsorptive Nanofibrous Membranes from Ion Exchange Polymers to Snare Textile Dyes from Wastewater. Advanced Materials Technologies, 2021, 6, 2000955.	3.0	52
20	Electrospun Adsorptive Nanofibrous Membranes from Ion Exchange Polymers to Snare Textile Dyes from Wastewater (Adv. Mater. Technol. 10/2021). Advanced Materials Technologies, 2021, 6, 2170059.	3.0	0
21	PIM-1/Holey Graphene Oxide Mixed Matrix Membranes for Gas Separation: Unveiling the Role of Holes. ACS Applied Materials & Interfaces, 2021, 13, 55517-55533.	4.0	22
22	Electrostatically-coupled graphene oxide nanocomposite cation exchange membrane. Journal of Membrane Science, 2020, 594, 117457.	4.1	26
23	Polymers of Intrinsic Microporosity and Their Potential in Process Intensification., 2020,, 231-264.		2
24	Comparison of pure and mixed gas permeation of the highly fluorinated polymer of intrinsic microporosity PIM-2 under dry and humid conditions: Experiment and modelling. Journal of Membrane Science, 2020, 594, 117460.	4.1	39
25	Understanding the Topology of the Polymer of Intrinsic Microporosity PIM-1: Cyclics, Tadpoles, and Network Structures and Their Impact on Membrane Performance. Macromolecules, 2020, 53, 569-583.	2.2	59
26	Intrinsically Microporous Polymer Nanosheets for Highâ€Performance Gas Separation Membranes. Macromolecular Rapid Communications, 2020, 41, e1900572.	2.0	23
27	Correlating Gas Permeability and Young's Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy. Industrial & Engineering Chemistry Research, 2020, 59, 5381-5391.	1.8	25
28	Harnessing the enantiomeric recognition ability of hydrophobic polymers of intrinsic microporosity (PIM-1) toward amino acids by converting them into hydrophilic polymer dots. Journal of Materials Chemistry C, 2020, 8, 13827-13835.	2.7	12
29	Optical Analysis of the Internal Void Structure in Polymer Membranes for Gas Separation. Membranes, 2020, 10, 328.	1.4	5
30	Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. Nanoscale, 2020, 12, 23333-23370.	2.8	81
31	Molecular Mobility of a Polymer of Intrinsic Microporosity Revealed by Quasielastic Neutron Scattering. Macromolecules, 2020, 53, 6731-6739.	2.2	10
32	Poly[3-ethyl-1-vinyl-imidazolium] diethyl phosphate/Pebax® 1657 Composite Membranes and Their Gas Separation Performance. Membranes, 2020, 10, 224.	1.4	4
33	Mitigation of Physical Aging with Mixed Matrix Membranes Based on Cross-Linked PIM-1 Fillers and PIM-1. ACS Applied Materials & Samp; Interfaces, 2020, 12, 46756-46766.	4.0	47
34	Graphene-PSS/ <scp>l</scp> -DOPA nanocomposite cation exchange membranes for electrodialysis desalination. Environmental Science: Nano, 2020, 7, 3108-3123.	2.2	8
35	Superglassy Polymers to Treat Natural Gas by Hybrid Membrane/Amine Processes: Can Fillers Help?. Membranes, 2020, 10, 413.	1.4	7
36	Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination. Computation, 2020, 8, 28.	1.0	14

#	Article	IF	CITATIONS
37	Glassy PEEK-WC vs. Rubbery Pebax®1657 Polymers: Effect on the Gas Transport in CuNi-MOF Based Mixed Matrix Membranes. Applied Sciences (Switzerland), 2020, 10, 1310.	1.3	12
38	The origin of size-selective gas transport through polymers of intrinsic microporosity. Journal of Materials Chemistry A, 2019, 7, 20121-20126.	5.2	63
39	Effect of Backbone Rigidity on the Glass Transition of Polymers of Intrinsic Microporosity Probed by Fast Scanning Calorimetry. ACS Macro Letters, 2019, 8, 1022-1028.	2.3	35
40	Quantification of gas permeability of epoxy resin composites with graphene nanoplatelets. Composites Science and Technology, 2019, 184, 107875.	3.8	9
41	The potential of polymers of intrinsic microporosity (PIMs) and PIM/graphene composites for pervaporation membranes. BMC Chemical Engineering, 2019, 1, .	3.4	21
42	Pervaporation and vapour permeation of methanol – dimethyl carbonate mixtures through PIM-1 membranes. Separation and Purification Technology, 2019, 217, 206-214.	3.9	29
43	Synergistic enhancement of gas selectivity in thin film composite membranes of PIM-1. Journal of Materials Chemistry A, 2019, 7, 6417-6430.	5.2	55
44	Designer Polymers Boost Cation Exchange. Trends in Chemistry, 2019, 1, 797-798.	4.4	0
45	Mixed matrix membranes based on MIL-101 metal–organic frameworks in polymer of intrinsic microporosity PIM-1. Separation and Purification Technology, 2019, 212, 545-554.	3.9	53
46	Gas sorption in polymers of intrinsic microporosity: The difference between solubility coefficients determined via time-lag and direct sorption experiments. Journal of Membrane Science, 2019, 570-571, 522-536.	4.1	29
47	Determination of Physical Properties and Crystallization Kinetics of Oil From Allanblackia Seeds and Shea Nuts Under Different Thermal Conditions. European Journal of Lipid Science and Technology, 2018, 120, 1700156.	1.0	7
48	First Clear-Cut Experimental Evidence of a Glass Transition in a Polymer with Intrinsic Microporosity: PIM-1. Journal of Physical Chemistry Letters, 2018, 9, 2003-2008.	2.1	67
49	Temperature and pressure dependence of gas permeation in amine-modified PIM-1. Journal of Membrane Science, 2018, 555, 483-496.	4.1	45
50	The unique calcium chelation property of poly(vinyl phosphonic acidâ€coâ€acrylic acid) and effects on osteogenesis <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2018, 106, 168-179.	2.1	15
51	Poly(vinylphosphonic acidâ€∢i>coâ€acrylic acid) hydrogels: The effect of copolymer composition on osteoblast adhesion and proliferation. Journal of Biomedical Materials Research - Part A, 2018, 106, 255-264.	2.1	35
52	Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity – the Boson peak of PIM-1. Physical Chemistry Chemical Physics, 2018, 20, 1355-1363.	1.3	17
53	Graphene oxide–polybenzimidazolium nanocomposite anion exchange membranes for electrodialysis. Journal of Materials Chemistry A, 2018, 6, 24728-24739.	5.2	87
54	Temperature Dependence of Gas Permeation and Diffusion in Triptycene-Based Ultrapermeable Polymers of Intrinsic Microporosity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36475-36482.	4.0	58

#	Article	IF	Citations
55	Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. Journal of Membrane Science, 2018, 565, 390-401.	4.1	38
56	The synthesis, chain-packing simulation and long-term gas permeability of highly selective spirobifluorene-based polymers of intrinsic microporosity. Journal of Materials Chemistry A, 2018, 6, 10507-10514.	5.2	91
57	Impeded physical aging in PIM-1 membranes containing graphene-like fillers. Journal of Membrane Science, 2018, 563, 513-520.	4.1	65
58	Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation. Journal of Membrane Science, 2018, 564, 878-886.	4.1	69
59	Review of nanomaterials-assisted ion exchange membranes for electromembrane desalination. Npj Clean Water, 2018, 1 , .	3.1	7 9
60	Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. Chemical Reviews, 2018, 118, 5871-5911.	23.0	414
61	Graphene/Polyamide Laminates for Supercritical CO ₂ and H ₂ S Barrier Applications: An Approach toward Permeation Shutdown. Advanced Materials Interfaces, 2018, 5, 1800304.	1.9	6
62	Gas Barriers: Graphene/Polyamide Laminates for Supercritical CO2 and H2 S Barrier Applications: An Approach toward Permeation Shutdown (Adv. Mater. Interfaces 15/2018). Advanced Materials Interfaces, 2018, 5, 1870076.	1.9	0
63	Selective dye adsorption by chemically-modified and thermally-treated polymers of intrinsic microporosity. Journal of Colloid and Interface Science, 2017, 492, 81-91.	5.0	85
64	Molecular mobility and gas transport properties of nanocomposites based on PIM-1 and polyhedral oligomeric phenethyl-silsesquioxanes (POSS). Journal of Membrane Science, 2017, 529, 274-285.	4.1	28
65	High-flux PIM-1/PVDF thin film composite membranes for 1-butanol/water pervaporation. Journal of Membrane Science, 2017, 529, 207-214.	4.1	79
66	Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillers. Journal of Membrane Science, 2017, 526, 437-449.	4.1	57
67	Environmentally benign and diastereoselective synthesis of 2,4,5-trisubstituted-2-imidazolines. RSC Advances, 2017, 7, 53278-53289.	1.7	9
68	Systematic hydrolysis of PIM-1 and electrospinning of hydrolyzed PIM-1 ultrafine fibers for an efficient removal of dye from water. Reactive and Functional Polymers, 2017, 121, 67-75.	2.0	52
69	Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1. Separation and Purification Technology, 2017, 173, 304-313.	3.9	148
70	Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation. Membranes, 2017, 7, 7.	1.4	32
71	1.9 Membranes Made of Polymers of Intrinsic Microporosity (PIMs). , 2017, , 216-235.		1
72	Molecular Mobility of the High Performance Membrane Polymer PIM-1 as Investigated by Dielectric Spectroscopy. ACS Macro Letters, 2016, 5, 528-532.	2.3	35

#	Article	IF	CITATIONS
73	Aging of polymers of intrinsic microporosity tracked by methanol vapour permeation. Journal of Membrane Science, 2016, 520, 895-906.	4.1	34
74	Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes. Scientific Reports, 2016, 6, 31183.	1.6	32
75	Synthesis and Characterization of Poly(vinylphosphonic acid- <i>co</i> -acrylic acid) Copolymers for Application in Bone Tissue Scaffolds. Macromolecules, 2016, 49, 2656-2662.	2.2	33
76	PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers. Chemical Communications, 2016, 52, 5581-5584.	2.2	121
77	Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporosity. Carbon, 2016, 102, 357-366.	5.4	34
78	The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150031.	1.6	51
79	Study of glassy polymers fractional accessible volume (FAV) by extended method of hydrostatic weighing: Effect of porous structure on liquid transport. Reactive and Functional Polymers, 2015, 86, 269-281.	2.0	58
80	Highly monodisperse, lanthanideâ€containing polystyrene nanoparticles as potential standard reference materials for environmental "nano―fate analysis. Journal of Applied Polymer Science, 2015, 132, .	1.3	37
81	Hydroxyalkylaminoalkylamide PIMs: Selective Adsorption by Ethanolamine- and Diethanolamine-Modified PIM-1. Macromolecules, 2015, 48, 5663-5669.	2.2	65
82	Sustainable wastewater treatment and recycling in membrane manufacturing. Green Chemistry, 2015, 17, 5196-5205.	4.6	229
83	Polymerized high internal phase emulsion monoliths for the chromatographic separation of engineered nanoparticles. Journal of Applied Polymer Science, 2015, 132, .	1.3	38
84	PIM-1/graphene composite: A combined experimental and molecular simulation study. Microporous and Mesoporous Materials, 2015, 209, 126-134.	2.2	53
85	Enhancement of CO ₂ Affinity in a Polymer of Intrinsic Microporosity by Amine Modification. Macromolecules, 2014, 47, 1021-1029.	2.2	204
86	Base-catalysed hydrolysis of PIM-1: amide versus carboxylate formation. RSC Advances, 2014, 4, 52189-52198.	1.7	91
87	Thermally Rearrangeable PIM-Polyimides for Gas Separation Membranes. Macromolecules, 2014, 47, 5595-5606.	2.2	118
88	Physical aging of polymers of intrinsic microporosity: a SAXS/WAXS study. Journal of Materials Chemistry A, 2014, 2, 11742-11752.	5. 2	71
89	Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation. Journal of Membrane Science, 2013, 434, 137-147.	4.1	171
90	Nanoporous Organic Polymer/Cage Composite Membranes. Angewandte Chemie - International Edition, 2013, 52, 1253-1256.	7.2	263

#	Article	IF	Citations
91	New organophilic mixed matrix membranes derived from a polymer of intrinsic microporosity and silicalite-1. Polymer, 2013, 54, 2222-2230.	1.8	66
92	Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. Journal of Membrane Science, 2013, 427, 48-62.	4.1	312
93	Solvent nanofiltration through high permeability glassy polymers: Effect of polymer and solute nature. Journal of Membrane Science, 2012, 423-424, 65-72.	4.1	116
94	Polymer of Intrinsic Microporosity Incorporating Thioamide Functionality: Preparation and Gas Transport Properties. Macromolecules, 2011, 44, 6471-6479.	2.2	233
95	Structural Characterization of a Polymer of Intrinsic Microporosity: X-ray Scattering with Interpretation Enhanced by Molecular Dynamics Simulations. Macromolecules, 2011, 44, 14-16.	2.2	76
96	Effect of end-group modification on the adsorption of poly(ethylene oxide)-b-poly(butylene oxide) diblock copolymers at the solid–liquid interface. Polymer Bulletin, 2010, 65, 521-531.	1.7	5
97	Free Volume Investigation of Polymers of Intrinsic Microporosity (PIMs): PIM-1 and PIM1 Copolymers Incorporating Ethanoanthracene Units. Macromolecules, 2010, 43, 6075-6084.	2.2	100
98	Highly permeable polymers for gas separation membranes. Polymer Chemistry, 2010, 1, 63.	1.9	308
99	Triptycene-Based Polymers of Intrinsic Microporosity: Organic Materials That Can Be Tailored for Gas Adsorption. Macromolecules, 2010, 43, 5287-5294.	2.2	275
100	Exploitation of Intrinsic Microporosity in Polymer-Based Materials. Macromolecules, 2010, 43, 5163-5176.	2.2	725
101	Synthesis, Characterization, and Gas Permeation Properties of a Novel Group of Polymers with Intrinsic Microporosity: PIM-Polyimides. Macromolecules, 2009, 42, 7881-7888.	2.2	250
102	Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1). Journal of Membrane Science, 2008, 318, 84-99.	4.1	227
103	Highâ€Performance Membranes from Polyimides with Intrinsic Microporosity. Advanced Materials, 2008, 20, 2766-2771.	11.1	307
104	Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1. Journal of Membrane Science, 2008, 325, 851-860.	4.1	470
105	Polymers of Intrinsic Microporosity Derived from Bis(phenazyl) Monomers. Macromolecules, 2008, 41, 1640-1646.	2.2	150
106	Catalysis by microporous phthalocyanine and porphyrin network polymers. Journal of Materials Chemistry, 2008, 18, 573-578.	6.7	246
107	CHEMISTRY: Putting Order into Polymer Networks. Science, 2007, 316, 210-211.	6.0	33
108	A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. Chemical Communications, 2007, , 67-69.	2.2	282

#	Article	IF	Citations
109	The potential of organic polymer-based hydrogen storage materials. Physical Chemistry Chemical Physics, 2007, 9, 1802.	1.3	197
110	Microporous Polymers as Potential Hydrogen Storage Materials. Macromolecular Rapid Communications, 2007, 28, 995-1002.	2.0	176
111	Unusual temperature dependence of the positron lifetime in a polymer of intrinsic microporosity. Physica Status Solidi - Rapid Research Letters, 2007, 1, 190-192.	1.2	32
112	Polymers of Intrinsic Microporosity (PIMs): High Free Volume Polymers for Membrane Applications. Macromolecular Symposia, 2006, 245-246, 403-405.	0.4	80
113	Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chemical Society Reviews, 2006, 35, 675.	18.7	1,545
114	Adsorption Studies of a Microporous Phthalocyanine Network Polymer. Langmuir, 2006, 22, 4225-4229.	1.6	103
115	Towards Polymer-Based Hydrogen Storage Materials: Engineering Ultramicroporous Cavities within Polymers of Intrinsic Microporosity. Angewandte Chemie - International Edition, 2006, 45, 1804-1807.	7.2	421
116	Gas separation membranes from polymers of intrinsic microporosity. Journal of Membrane Science, 2005, 251, 263-269.	4.1	730
117	Polymers of Intrinsic Microporosity (PIMs): Bridging the Void between Microporous and Polymeric Materials. Chemistry - A European Journal, 2005, 11, 2610-2620.	1.7	461
118	Polymerization and carbonization of high internal phase emulsions. Polymer International, 2005, 54, 297-303.	1.6	56
119	Free volume and intrinsic microporosity in polymers. Journal of Materials Chemistry, 2005, 15, 1977.	6.7	364
120	Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chemical Communications, 2004, , 230.	2,2	1,084
121	A nanoporous network polymer derived from hexaazatrinaphthylene with potential as an adsorbent and catalyst support. Journal of Materials Chemistry, 2003, 13, 2721-2726.	6.7	128
122	Micelle properties of a dimethylamino- and a trimethylammonium-tipped oxyethylene–oxybutylene diblock copolymer in water. Physical Chemistry Chemical Physics, 2003, 5, 3968-3972.	1.3	8
123	Dimethylamino- and trimethylammonium-tipped oxyethylene–oxybutylene diblock copolymers and their use as structure-directing agents in the preparation of mesoporous silica. Journal of Materials Chemistry, 2002, 12, 2286-2291.	6.7	23
124	Electrophoresis of polymeric dyes in macroporous polymer. Polymer Bulletin, 2002, 49, 33-37.	1.7	3
125	Control of mesostructured silica particle morphology. Journal of Materials Chemistry, 2001, 11, 951-957.	6.7	106
126	Title is missing!. Journal of Materials Chemistry, 2001, 11, 2979-2984.	6.7	33

#	Article	IF	CITATIONS
127	Poly[oxymethylene-oligo(oxyethylene)] for use in subambient temperature electrochromic devices. Polymer International, 2000, 49, 371-376.	1.6	19
128	Ordered Langmuir–Blodgett films derived from a mesogenic polymer amphiphile. Journal of Materials Chemistry, 2000, 10, 2270-2273.	6.7	4
129	Characterization of Anacardiumoccidentale exudate polysaccharide. Polymer International, 1998, 45, 27-35.	1.6	154
130	Characterization of Anadenanthera macrocarpa exudate polysaccharide. Polymer International, 1997, 44, 55-60.	1.6	19
131	Nuclear magnetic relaxation of $\hat{l}\pm 13C$ nuclei of helical poly(\hat{l}^3 -hexyl-L-glutamate) and poly(\hat{l}^3 -benzyl-L-glutamate). Journal of Polymer Science, Part B: Polymer Physics, 1991, 29, 451-456.	2.4	13
132	Cross-Linked PIM-1 Membranes with Improved Stability to Aromatics. Key Engineering Materials, 0, 869, 431-436.	0.4	1