List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8905768/publications.pdf Version: 2024-02-01

DENC 7HANC

#	Article	IF	CITATIONS
1	Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Science Advances, 2022, 8, eabm4322.	10.3	49
2	High CO-Tolerant Ru-Based Catalysts by Constructing an Oxide Blocking Layer. Journal of the American Chemical Society, 2022, 144, 9292-9301.	13.7	29
3	Ultrafast Preparation of Nonequilibrium FeNi Spinels by Magnetic Induction Heating for Unprecedented Oxygen Evolution Electrocatalysis. Research, 2022, 2022, .	5.7	7
4	Thiolateâ€Protected Singleâ€Atom Alloy Nanoclusters: Correlation between Electronic Properties and Catalytic Activities. Advanced Materials Interfaces, 2021, 8, 2001342.	3.7	10
5	Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chemical Society Reviews, 2021, 50, 569-588.	38.1	220
6	Thiolate-Protected Bimetallic Nanoclusters: Understanding the Relationship between Electronic and Catalytic Properties. Journal of Physical Chemistry Letters, 2021, 12, 257-275.	4.6	9
7	Structurally Disordered Phosphorus-Doped Pt as a Highly Active Electrocatalyst for an Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 355-363.	11.2	79
8	Siteâ€5pecific Electronic Properties of [Ag ₂₅ (SR) ₁₈] ^{â^'} Nanoclusters by Xâ€Ray Spectroscopy. Small, 2021, 17, e2005162.	10.0	6
9	Interplay between Perovskite Magic-Sized Clusters and Amino Lead Halide Molecular Clusters. Research, 2021, 2021, 6047971.	5.7	13
10	Dynamic Structure of Metal Nanoclusters from Synchrotron X-ray Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 5982-5994.	3.1	5
11	In situ Xâ€ray Absorption Spectroscopy of Platinum Electrocatalysts. Chemistry Methods, 2021, 1, 162-172.	3.8	10
12	Electron donation of non-oxide supports boosts O2 activation on nano-platinum catalysts. Nature Communications, 2021, 12, 2741.	12.8	72
13	Extreme mixing in nanoscale transition metal alloys. Matter, 2021, 4, 2340-2353.	10.0	102
14	X-ray Spectroscopy of Silver Nanostructures toward Antibacterial Applications. Journal of Physical Chemistry C, 2020, 124, 4339-4351.	3.1	14
15	W-Doped TiO ₂ for photothermocatalytic CO ₂ reduction. Nanoscale, 2020, 12, 17245-17252.	5.6	37
16	Anisotropic Strain Tuning of L1 ₀ Ternary Nanoparticles for Oxygen Reduction. Journal of the American Chemical Society, 2020, 142, 19209-19216.	13.7	76
17	Titanosilicate zeolite precursors for highly efficient oxidation reactions. Chemical Science, 2020, 11, 12341-12349.	7.4	29
18	Controlling the Morphology and Titanium Coordination States of TS-1 Zeolites by Crystal Growth Modifier. Inorganic Chemistry, 2020, 59, 13201-13210.	4.0	40

#	Article	IF	CITATIONS
19	O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Science Advances, 2020, 6, eaba6586.	10.3	263
20	Interactions between Ultrastable Na ₄ Ag ₄₄ (SR) ₃₀ Nanoclusters and Coordinating Solvents: Uncovering the Atomic-Scale Mechanism. ACS Nano, 2020, 14, 8433-8441.	14.6	14
21	Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Science Advances, 2020, 6, eaaz0510.	10.3	158
22	Singleâ€Atom Catalysts Supported by Crystalline Porous Materials: Views from the Inside. Advanced Materials, 2020, 32, e2002910.	21.0	65
23	Synergism of Iron and Platinum Species for Low-Temperature CO Oxidation: From Two-Dimensional Surface to Nanoparticle and Single-Atom Catalysts. Journal of Physical Chemistry Letters, 2020, 11, 2219-2229.	4.6	29
24	Atomic Dispersion and Surface Enrichment of Palladium in Nitrogen-Doped Porous Carbon Cages Lead to High-Performance Electrocatalytic Reduction of Oxygen. ACS Applied Materials & Interfaces, 2020, 12, 17641-17650.	8.0	42
25	Oxygen Reduction Reaction Catalyzed by Carbon-Supported Platinum Few-Atom Clusters: Significant Enhancement by Doping of Atomic Cobalt. Research, 2020, 2020, 9167829.	5.7	18
26	PdAu Alloy Nanoparticles for Ethanol Oxidation in Alkaline Conditions: Enhanced Activity and C1 Pathway Selectivity. ACS Applied Energy Materials, 2019, 2, 8701-8706.	5.1	45
27	Bottom-up growth of homogeneous Moiré superlattices in bismuth oxychloride spiral nanosheets. Nature Communications, 2019, 10, 4472.	12.8	59
28	In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nature Communications, 2019, 10, 1330.	12.8	177
29	Short-Range Structure of Amorphous Calcium Hydrogen Phosphate. Crystal Growth and Design, 2019, 19, 3030-3038.	3.0	35
30	Luminescent Au(I)–Thiolate Complexes through Aggregation-Induced Emission: The Effect of pH during and Post Synthesis. Journal of Physical Chemistry C, 2019, 123, 6010-6017.	3.1	30
31	Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nature Communications, 2019, 10, 631.	12.8	423
32	Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nature Communications, 2019, 10, 4912.	12.8	157
33	Acetyleneâ€Mediated Synthesis of Supported Pt Nanocatalyst for Selective Hydrogenation of Halonitrobenzene. ChemNanoMat, 2018, 4, 518-523.	2.8	5
34	Structure and formation of highly luminescent protein-stabilized gold clusters. Chemical Science, 2018, 9, 2782-2790.	7.4	76
35	Fe Stabilization by Intermetallic L1 ₀ -FePt and Pt Catalysis Enhancement in L1 ₀ -FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells. Journal of the American Chemical Society, 2018, 140, 2926-2932.	13.7	312
36	Tunable Bifunctional Activity of Mn _{<i>x</i>} Co _{3â^'<i>x</i>} O ₄ Nanocrystals Decorated on Carbon Nanotubes for Oxygen Electrocatalysis. ChemSusChem, 2018, 11, 1295-1304.	6.8	50

#	Article	IF	CITATIONS
37	A vicinal effect for promoting catalysis of Pd1/TiO2: supports of atomically dispersed catalysts play more roles than simply serving as ligands. Science Bulletin, 2018, 63, 675-682.	9.0	80
38	Tailoring Surface Frustrated Lewis Pairs of In ₂ O _{3â^'} <i>_x</i> (OH) _y for Gasâ€Phase Heterogeneous Photocatalytic Reduction of CO ₂ by Isomorphous Substitution of In ³⁺ with Bi ³⁺ . Advanced Science, 2018, 5, 1700732.	11.2	91
39	Towards enhancing photocatalytic hydrogen generation: Which is more important, alloy synergistic effect or plasmonic effect?. Applied Catalysis B: Environmental, 2018, 221, 77-85.	20.2	59
40	Core Geometry Effect on the Bonding Properties of Gold–Thiolate Nanoclusters: The Case of Hexagonal-Close-Packed Au ₃₀ (SR) ₁₈ . Journal of Physical Chemistry C, 2018, 122, 23414-23419.	3.1	7
41	MnO ₂ /Fe ₂ O ₃ Nanocomposite Sorbent for Gas Capture. ACS Applied Nano Materials, 2018, 1, 6674-6682.	5.0	3
42	Sensitive X-ray Absorption Near Edge Structure Analysis on the Bonding Properties of Au ₃₀ (SR) ₁₈ Nanoclusters. ACS Omega, 2018, 3, 14981-14985.	3.5	8
43	Versatile Ligand-Exchange Method for the Synthesis of Water-Soluble Monodisperse AuAg Nanoclusters for Cancer Therapy. ACS Applied Nano Materials, 2018, 1, 6773-6781.	5.0	17
44	Reversible Control of Chemoselectivity in Au ₃₈ (SR) ₂₄ Nanocluster-Catalyzed Transfer Hydrogenation of Nitrobenzaldehyde Derivatives. Journal of Physical Chemistry Letters, 2018, 9, 7173-7179.	4.6	34
45	Golden single-atomic-site platinum electrocatalysts. Nature Materials, 2018, 17, 1033-1039.	27.5	266
46	Molecular-Scale Ligand Effects in Small Gold–Thiolate Nanoclusters. Journal of the American Chemical Society, 2018, 140, 15430-15436.	13.7	90
47	New Insights on the Bonding Properties of BCC-like Au ₃₈ S ₂ (SR) ₂₀ Nanoclusters from X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 22776-22782.	3.1	4
48	The structure and bonding properties of tiopronin-protected silver nanoparticles as studied by X-ray absorption spectroscopy. Canadian Journal of Chemistry, 2018, 96, 749-754.	1.1	3
49	On the functional role of the cerium oxide support in the Au38(SR)24/CeO2 catalyst for CO oxidation. Catalysis Today, 2017, 280, 239-245.	4.4	39
50	A DNA-Encapsulated and Fluorescent Ag ₁₀ ⁶⁺ Cluster with a Distinct Metal-Like Core. Journal of Physical Chemistry C, 2017, 121, 14936-14945.	3.1	27
51	Pd Nanoparticles Coupled to WO _{2.72} Nanorods for Enhanced Electrochemical Oxidation of Formic Acid. Nano Letters, 2017, 17, 2727-2731.	9.1	136
52	Novel nanoporous N-doped carbon-supported ultrasmall Pd nanoparticles: Efficient catalysts for hydrogen storage and release. Applied Catalysis B: Environmental, 2017, 203, 820-828.	20.2	80
53	Bonding properties of FCC-like Au ₄₄ (SR) ₂₈ clusters from X-ray absorption spectroscopy. Canadian Journal of Chemistry, 2017, 95, 1220-1224.	1.1	7
54	Subnanometric Hybrid Pd-M(OH)2, MÂ= Ni, Co, Clusters in Zeolites as Highly Efficient Nanocatalysts for Hydrogen Generation. CheM, 2017, 3, 477-493.	11.7	212

#	Article	IF	CITATIONS
55	An intrinsic dual-emitting gold thiolate coordination polymer, [Au(+I)(p-SPhCO ₂ H)] _n , for ratiometric temperature sensing. Journal of Materials Chemistry C, 2017, 5, 9843-9848.	5.5	30
56	Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide. Science Advances, 2017, 3, e1701069.	10.3	211
57	Promoting Effect of Ni(OH) ₂ on Palladium Nanocrystals Leads to Greatly Improved Operation Durability for Electrocatalytic Ethanol Oxidation in Alkaline Solution. Advanced Materials, 2017, 29, 1703057.	21.0	251
58	Photothermal Catalyst Engineering: Hydrogenation of Gaseous CO ₂ with High Activity and Tailored Selectivity. Advanced Science, 2017, 4, 1700252.	11.2	97
59	Amorphous MoS ₃ Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodium″on Batteries with Large Gravimetric, Areal, and Volumetric Capacities. Advanced Energy Materials, 2017, 7, 1601602.	19.5	164
60	Water as the Key to Protoâ€Aragonite Amorphous CaCO ₃ . Angewandte Chemie - International Edition, 2016, 55, 8117-8120.	13.8	78
61	Luminescent Gold Nanoparticles with Sizeâ€Independent Emission. Angewandte Chemie - International Edition, 2016, 55, 8894-8898.	13.8	126
62	A Segregated, Partially Oxidized, and Compact Ag ₁₀ Cluster within an Encapsulating DNA Host. Journal of the American Chemical Society, 2016, 138, 3469-3477.	13.7	70
63	Cation Exchange of Anisotropic-Shaped Magnetite Nanoparticles Generates High-Relaxivity Contrast Agents for Liver Tumor Imaging. Chemistry of Materials, 2016, 28, 3497-3506.	6.7	45
64	Photochemical route for synthesizing atomically dispersed palladium catalysts. Science, 2016, 352, 797-800.	12.6	1,540
65	Distinct Shortâ€Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2â€nm). Angewandte Chemie - International Edition, 2016, 55, 12206-12209.	13.8	47
66	Gold–Manganese Oxide Core–Shell Nanoparticles Produced by Pulsed Laser Ablation in Water. Journal of Physical Chemistry C, 2016, 120, 22635-22645.	3.1	13
67	Electroâ€Oxidation of Ni42 Steel: A Highly Active Bifunctional Electrocatalyst. Advanced Functional Materials, 2016, 26, 6402-6417.	14.9	90
68	Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nature Communications, 2016, 7, 13216.	12.8	334
69	X20CoCrWMo10-9//Co ₃ O ₄ : a metal–ceramic composite with unique efficiency values for water-splitting in the neutral regime. Energy and Environmental Science, 2016, 9, 2609-2622.	30.8	84
70	Energy Migration Upconversion in Manganese(II)â€Đoped Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 13312-13317.	13.8	64
71	Disordered amorphous calcium carbonate from direct precipitation. CrystEngComm, 2015, 17, 4842-4849.	2.6	67
72	Impact of Protecting Ligands on Surface Structure and Antibacterial Activity of Silver Nanoparticles. Langmuir, 2015, 31, 3745-3752.	3.5	47

#	Article	IF	CITATIONS
73	Description and Role of Bimetallic Prenucleation Species in the Formation of Small Nanoparticle Alloys. Journal of the American Chemical Society, 2015, 137, 15852-15858.	13.7	40
74	A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Science Advances, 2015, 1, e1500462.	10.3	719
75	Role of Au ₄ Units on the Electronic and Bonding Properties of Au ₂₈ (SR) ₂₀ Nanoclusters from X-ray Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 1217-1223.	3.1	32
76	Copper Phosphate as a Cathode Material for Rechargeable Li Batteries and Its Electrochemical Reaction Mechanism. Chemistry of Materials, 2015, 27, 5736-5744.	6.7	32
77	The surface structure of silver-coated gold nanocrystals and its influence on shape control. Nature Communications, 2015, 6, 7664.	12.8	53
78	Correlating the Atomic Structure of Bimetallic Silver–Gold Nanoparticles to Their Antibacterial and Cytotoxic Activities. Journal of Physical Chemistry C, 2015, 119, 7472-7482.	3.1	44
79	A highly active, stable and synergistic Pt nanoparticles/Mo2C nanotube catalyst for methanol electro-oxidation. NPG Asia Materials, 2015, 7, e153-e153.	7.9	88
80	Structure of Tiopronin-Protected Silver Nanoclusters in a One-Dimensional Assembly. Journal of Physical Chemistry C, 2015, 119, 24627-24635.	3.1	12
81	A nanoparticulate polyacetylene-supported Pd(II) catalyst combining the advantages of homogeneous and heterogeneous catalysts. Chinese Journal of Catalysis, 2015, 36, 1560-1572.	14.0	8
82	Bonding properties of thiolate-protected gold nanoclusters and structural analogs from X-ray absorption spectroscopy. Nanotechnology Reviews, 2015, 4, 193-206.	5.8	30
83	Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature Communications, 2015, 6, 10035.	12.8	466
84	Self-Assembly and Chemical Reactivity of Alkenes on Platinum Nanoparticles. Langmuir, 2015, 31, 522-528.	3.5	11
85	A site-specific comparative study of Au102 and Au25 nanoclusters using theoretical EXAFS and I-DOS. Canadian Journal of Chemistry, 2015, 93, 32-36.	1.1	2
86	Surface Reconstruction and Reactivity of Platinum–Iron Oxide Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 28861-28867.	3.1	5
87	Identification of a Highly Luminescent Au ₂₂ (SG) ₁₈ Nanocluster. Journal of the American Chemical Society, 2014, 136, 1246-1249.	13.7	490
88	Enhancing multiphoton upconversion through energy clustering at sublattice level. Nature Materials, 2014, 13, 157-162.	27.5	528
89	Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chemistry, 2014, 16, 2432-2437.	9.0	239
90	Element-Specific Analysis of the Growth Mechanism, Local Structure, and Electronic Properties of Pt Clusters Formed on Ag Nanoparticle Surfaces. Journal of Physical Chemistry C, 2014, 118, 21714-21721.	3.1	12

#	Article	IF	CITATIONS
91	X-ray Spectroscopy of Gold–Thiolate Nanoclusters. Journal of Physical Chemistry C, 2014, 118, 25291-25299.	3.1	138
92	Impact of the Selenolate Ligand on the Bonding Behavior of Au ₂₅ Nanoclusters. Journal of Physical Chemistry C, 2014, 118, 21730-21737.	3.1	14
93	Fe–N bonding in a carbon nanotube–graphene complex for oxygen reduction: an XAS study. Physical Chemistry Chemical Physics, 2014, 16, 15787.	2.8	84
94	Interfacial Effects in Iron-Nickel Hydroxide–Platinum Nanoparticles Enhance Catalytic Oxidation. Science, 2014, 344, 495-499.	12.6	591
95	Size Effects of Platinum Colloid Particles on the Structure and CO Oxidation Properties of Supported Pt/Fe ₂ O ₃ Catalysts. Journal of Physical Chemistry C, 2013, 117, 21254-21262.	3.1	67
96	Unique Bonding Properties of the Au ₃₆ (SR) ₂₄ Nanocluster with FCC-Like Core. Journal of Physical Chemistry Letters, 2013, 4, 3186-3191.	4.6	43
97	Germanate with Three-Dimensional 12 × 12 × 11-Ring Channels Solved by X-ray Powder Diffraction with Charge-Flipping Algorithm. Inorganic Chemistry, 2013, 52, 10238-10244.	4.0	9
98	In Situ Electrochemical XAFS Studies on an Iron Fluoride High-Capacity Cathode Material for Rechargeable Lithium Batteries. Journal of Physical Chemistry C, 2013, 117, 11498-11505.	3.1	51
99	Peptide-Directed Preparation and X-ray Structural Study of Au Nanoparticles on Titanium Surfaces. Langmuir, 2013, 29, 4894-4900.	3.5	2
100	Local Structure, Electronic Behavior, and Electrocatalytic Reactivity of CO-Reduced Platinum–Iron Oxide Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 26324-26333.	3.1	40
101	A Comparative XAFS Study of Gold-thiolate Nanoparticles and Nanoclusters. Journal of Physics: Conference Series, 2013, 430, 012029.	0.4	8
102	Properties and applications of protein-stabilized fluorescent gold nanoclusters: short review. Journal of Nanophotonics, 2012, 6, 064504.	1.0	147
103	Sensitivity of Structural and Electronic Properties of Gold–Thiolate Nanoclusters to the Atomic Composition: A Comparative X-ray Study of Au ₁₉ (SR) ₁₃ and Au ₂₅ (SR) ₁₈ . Journal of Physical Chemistry C, 2012, 116, 25137-25142.	3.1	34
104	Dopant Location, Local Structure, and Electronic Properties of Au ₂₄ Pt(SR) ₁₈ Nanoclusters. Journal of Physical Chemistry C, 2012, 116, 26932-26937.	3.1	105
105	Surface Structure of Organosulfur Stabilized Silver Nanoparticles Studied with X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 23094-23101.	3.1	38
106	Biomolecule-Coated Metal Nanoparticles on Titanium. Langmuir, 2012, 28, 2979-2985.	3.5	11
107	Local structure of fluorescent platinum nanoclusters. Nanoscale, 2012, 4, 4199.	5.6	40
108	The Structure and Bonding of Au ₂₅ (SR) ₁₈ Nanoclusters from EXAFS: The Interplay of Metallic and Molecular Behavior. Journal of Physical Chemistry C, 2011, 115, 15282-15287.	3.1	114

#	Article	IF	CITATIONS
109	Solution-Phase Structure and Bonding of Au ₃₈ (SR) ₂₄ Nanoclusters from X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 65-69.	3.1	56
110	Kinetic Control and Thermodynamic Selection in the Synthesis of Atomically Precise Gold Nanoclusters. Journal of the American Chemical Society, 2011, 133, 9670-9673.	13.7	209
111	Temperature-Dependent Structure and Electrochemical Behavior of RuO ₂ /Carbon Nanocomposites. Journal of Physical Chemistry C, 2011, 115, 19117-19128.	3.1	45
112	Gold nanoparticles on titanium and interaction with prototype protein. Journal of Biomedical Materials Research - Part A, 2010, 95A, 146-155.	4.0	16
113	Tailoring the local structure and electronic property of AuPd nanoparticles by selecting capping molecules. Applied Physics Letters, 2010, 96, 043105.	3.3	19
114	Site-Specific and Size-Dependent Bonding of Compositionally Precise Goldâ^'Thiolate Nanoparticles from X-ray Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 1821-1825.	4.6	86
115	Ultrathin Bi ₂ S ₃ Nanowires: Surface and Core Structure at the Cluster-Nanocrystal Transition. Journal of the American Chemical Society, 2010, 132, 9058-9068. X-ray absorption spectroscopy studies of local structure and electronic properties of cmml:math	13.7	61
116	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mrow > < mml:msub > < mml:mrow > < mml:mtext > Na < /mml:mtext > < /mml:mrow > < mml:mi > x xmlns:mml="http://www.w3.org/1998/Math/MathML"	<td></td>	

#	Article	IF	CITATIONS
127	X-Ray Studies of the Structure and Electronic Behavior of Alkanethiolate-Capped Gold Nanoparticles: The Interplay of Size and Surface Effects. Physical Review Letters, 2003, 90, 245502.	7.8	351
128	Electrochemical route for the fabrication of alkanethiolate-capped gold nanoparticles. Applied Physics Letters, 2003, 82, 1470-1472.	3.3	14
129	Fabrication of thiol-capped Pd nanoparticles: An electrochemical method. Applied Physics Letters, 2003, 82, 1778-1780.	3.3	23
130	Tuning the electronic behavior of Au nanoparticles with capping molecules. Applied Physics Letters, 2002, 81, 736-738.	3.3	165
131	Soft x-ray excited optical luminescence: Some recent applications. Review of Scientific Instruments, 2002, 73, 1379-1381.	1.3	17
132	Structure and Electronic Properties of Molecularly-capped Metal Nanoparticles: The effect of Nano-size, Metal Core and Capping Molecule Probed by X-ray Absorption Spectroscopy. Materials Research Society Symposia Proceedings, 2002, 738, 1341.	0.1	1
133	Nanostructured CdS prepared on porous silicon substrate: Structure, electronic, and optical properties. Journal of Applied Physics, 2002, 91, 6038-6043.	2.5	32
134	Ag Nanostructures on a Silicon Nanowire Template:Â Preparation and X-ray Absorption Fine Structure Study at the Si K-edge and Ag L3,2-edge. Chemistry of Materials, 2002, 14, 2519-2526.	6.7	22
135	X-ray absorption fine structure and electron energy loss spectroscopy study of silicon nanowires at the Si L3,2 edge. Journal of Applied Physics, 2001, 90, 6379-6383.	2.5	25
136	X-ray Excited Optical Luminescence Studies of Tris-(2,2â€~-bipyridine)ruthenium(II) at the C, N K-edge and Ru L3,2-edge. Journal of the American Chemical Society, 2001, 123, 8870-8871.	13.7	21
137	XANES studies of CdS nano-structures on porous silicon. Journal of Electron Spectroscopy and Related Phenomena, 2001, 119, 229-233.	1.7	6
138	Amorphous carbon nanowires investigated by near-edge-x-ray-absorption-fine-structures. Applied Physics Letters, 2001, 79, 3773-3775.	3.3	59
139	Soft x-ray-excited luminescence and optical x-ray absorption fine structures of tris (8-hydroxyquinoline) aluminum. Applied Physics Letters, 2001, 78, 1847-1849.	3.3	16
140	Multichannel detection x-ray absorption near edge structures study on the structural characteristics of dendrimer-stabilized CdS quantum dots. Journal of Applied Physics, 2001, 90, 2755-2759.	2.5	18
141	Semiconductor Growth and Junction Formation within Nano-Porous Oxides. Physica Status Solidi A, 2000, 182, 157-162.	1.7	24
142	X-ray excited optical luminescence (XEOL): a potential tool for OELD studies. Thin Solid Films, 2000, 363, 318-321.	1.8	28
143	Surface photovoltage behavior of porous silicon modified with SO4 specimens. Materials Chemistry and Physics, 2000, 63, 167-169.	4.0	1
144	Influence of sample oxidation on the nature of optical luminescence from porous silicon. Applied Physics Letters, 2000, 77, 498-500.	3.3	28

#	Article	IF	CITATIONS
145	Horseradish Peroxidase-Catalyzed Preparation and Optoelectronic Property of Poly(1,5-dihydroxynaphthalene) Composite in Porous Silicon Nanohosta. Annals of the New York Academy of Sciences, 1998, 864, 250-252.	3.8	3
146	Heterostructure of silicon/organized-polymer-film with varied liquid crystalline states: a photovoltaic study. Thin Solid Films, 1998, 327-329, 412-414.	1.8	0
147	Photovoltaic Properties of Polymer/Fe2O3/Polymer Heterostructured Microspheres. Journal of Physical Chemistry B, 1998, 102, 2329-2332.	2.6	38
148	Modification of surface morphology and optoelectronic response in porous Si films by electrochemical methods. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 1604.	1.6	3
149	Optoelectronic behavior of conjugated polymer/silicon heterojunctions. Synthetic Metals, 1997, 85, 1293-1294.	3.9	7
150	Electrochemical deposition and photovoltaic properties of Nano-Fe2O3-incorporated polypyrrole films. Synthetic Metals, 1997, 84, 165-166.	3.9	24
151	Trilayer Composite Poly(styrene/butyl acrylate/acrylic acid) Terpolymer Microspheres with Fe2O3 Middle Layer: Synthesis and Characterization. Polymer International, 1997, 43, 274-280.	3.1	5
152	A large library for tiny catalysts. Nature Materials, 0, , .	27.5	0