List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8905330/publications.pdf Version: 2024-02-01

208 papers	14,959 citations	18887 64 h-index	24511 114 g-index
213	213	213	10312
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Clouds, circulation and climate sensitivity. Nature Geoscience, 2015, 8, 261-268.	5.4	647
2	Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. Journal of Climate, 2007, 20, 4819-4834.	1.2	627
3	Western North Pacific Tropical Cyclone Intensity and ENSO. Journal of Climate, 2005, 18, 2996-3006.	1.2	582
4	The Weak Temperature Gradient Approximation and Balanced Tropical Moisture Waves*. Journals of the Atmospheric Sciences, 2001, 58, 3650-3665.	0.6	504
5	Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 65-89.	3.6	471
6	Tropical Tropospheric Temperature Variations Caused by ENSO and Their Influence on the Remote Tropical Climate*. Journal of Climate, 2002, 15, 2616-2631.	1.2	396
7	Using Weather Data and Climate Model Output in Economic Analyses of Climate Change. Review of Environmental Economics and Policy, 2013, 7, 181-198.	3.1	380
8	Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Climatic Change, 2018, 151, 555-571.	1.7	317
9	Modeling Tropical Precipitation in a Single Column. Journal of Climate, 2000, 13, 4378-4392.	1.2	311
10	Diagnosis of the MJO Modulation of Tropical Cyclogenesis Using an Empirical Index. Journals of the Atmospheric Sciences, 2009, 66, 3061-3074.	0.6	310
11	Moisture Modes and the Eastward Propagation of the MJO. Journals of the Atmospheric Sciences, 2013, 70, 187-192.	0.6	307
12	Human influence on tropical cyclone intensity. Science, 2016, 353, 242-246.	6.0	286
13	A global perspective on African climate. Climatic Change, 2008, 90, 359-383.	1.7	247
14	An Idealized Semi-Empirical Framework for Modeling the Madden–Julian Oscillation. Journals of the Atmospheric Sciences, 2012, 69, 1691-1705.	0.6	233
15	The Mechanics of Gross Moist Stability. Journal of Advances in Modeling Earth Systems, 2009, 1, .	1.3	228
16	Moist Static Energy Budget of the MJO during DYNAMO. Journals of the Atmospheric Sciences, 2014, 71, 4276-4291.	0.6	206
17	A Poisson Regression Index for Tropical Cyclone Genesis and the Role of Large-Scale Vorticity in Genesis. Journal of Climate, 2011, 24, 2335-2357.	1.2	195
18	Propagating versus Nonpropagating Madden–Julian Oscillation Events. Journal of Climate, 2014, 27, 111-125.	1.2	194

#	Article	IF	CITATIONS
19	Surface Fluxes and Ocean Coupling in the Tropical Intraseasonal Oscillation. Journal of Climate, 2004, 17, 4368-4386.	1.2	176
20	SST Forcings and Sahel Rainfall Variability in Simulations of the Twentieth and Twenty-First Centuries. Journal of Climate, 2008, 21, 3471-3486.	1.2	170
21	Tropical cyclone genesis potential index in climate models. Tellus, Series A: Dynamic Meteorology and Oceanography, 2007, 59, 428-443.	0.8	168
22	What Is the Polar Vortex and How Does It Influence Weather?. Bulletin of the American Meteorological Society, 2017, 98, 37-44.	1.7	162
23	Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American Meteorological Society, 2015, 96, 997-1017.	1.7	158
24	The ENSO Signal in Tropical Tropospheric Temperature. Journal of Climate, 2002, 15, 2702-2706.	1.2	151
25	A Systematic Relationship between Intraseasonal Variability and Mean State Bias in AGCM Simulations. Journal of Climate, 2011, 24, 5506-5520.	1.2	151
26	The Tropical Subseasonal Variability Simulated in the NASA GISS General Circulation Model. Journal of Climate, 2012, 25, 4641-4659.	1.2	148
27	Delayed Sahel rainfall and global seasonal cycle in a warmer climate. Geophysical Research Letters, 2009, 36, .	1.5	135
28	Development of Synoptic-Scale Disturbances over the Summertime Tropical Northwest Pacific. Journals of the Atmospheric Sciences, 1999, 56, 3106-3127.	0.6	132
29	Very high resolution rainfall patterns measured by TRMM precipitation radar: seasonal and diurnal cycles. Climate Dynamics, 2012, 39, 239-258.	1.7	131
30	Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nature Geoscience, 2015, 8, 278-283.	5.4	129
31	Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophysical Research Letters, 2000, 27, 1739-1742.	1.5	126
32	Surface Fluxes and Tropical Intraseasonal Variability: a Reassessment. Journal of Advances in Modeling Earth Systems, 2010, 2, .	1.3	122
33	A Simple Model of a Convectively Coupled Walker Circulation Using the Weak Temperature Gradient Approximation. Journal of Climate, 2002, 15, 2907-2920.	1.2	121
34	Large-Scale Meteorology and Deep Convection during TRMM KWAJEX*. Monthly Weather Review, 2004, 132, 422-444.	0.5	120
35	The role of surface heat fluxes in tropical intraseasonal oscillations. Nature Geoscience, 2008, 1, 653-657.	5.4	120
36	Characteristics of tropical cyclones in highâ€resolution models in the present climate. Journal of Advances in Modeling Earth Systems, 2014, 6, 1154-1172.	1.3	111

#	Article	IF	CITATIONS
37	Projected Changes in the Seasonal Cycle of Surface Temperature. Journal of Climate, 2012, 25, 6359-6374.	1.2	109
38	Testing the Performance of Tropical Cyclone Genesis Indices in Future Climates Using the HiRAM Model. Journal of Climate, 2014, 27, 9171-9196.	1.2	109
39	Intraseasonal Variability in an Aquaplanet General Circulation Model. Journal of Advances in Modeling Earth Systems, 2010, 2, .	1.3	101
40	Global energetics and local physics as drivers of past, present and future monsoons. Nature Geoscience, 2018, 11, 392-400.	5.4	100
41	Diagnosis of Subtropical Humidity Dynamics Using Tracers of Last Saturation. Journals of the Atmospheric Sciences, 2005, 62, 3353-3367.	0.6	97
42	An empirical model relating U.S. monthly hail occurrence to largeâ€scale meteorological environment. Journal of Advances in Modeling Earth Systems, 2015, 7, 226-243.	1.3	96
43	Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nature Communications, 2016, 7, 10625.	5.8	95
44	The Role of the Sahara Low in Summertime Sahel Rainfall Variability and Change in the CMIP3 Models. Journal of Climate, 2009, 22, 5755-5771.	1.2	94
45	An Environmentally Forced Tropical Cyclone Hazard Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 223-241.	1.3	93
46	AGCM Precipitation Biases in the Tropical Atlantic. Journal of Climate, 2006, 19, 935-958.	1.2	90
47	Regional Simulation of the October and November MJO Events Observed during the CINDY/DYNAMO Field Campaign at Gray Zone Resolution. Journal of Climate, 2015, 28, 2097-2119.	1.2	87
48	Role of Radiative–Convective Feedbacks in Spontaneous Tropical Cyclogenesis in Idealized Numerical Simulations. Journals of the Atmospheric Sciences, 2016, 73, 2633-2642.	0.6	85
49	Dynamic amplification of extreme precipitation sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9467-9472.	3.3	85
50	Gross Moist Stability and MJO Simulation Skill in Three Full-Physics GCMs. Journals of the Atmospheric Sciences, 2014, 71, 3327-3349.	0.6	84
51	Effects of Relative and Absolute Sea Surface Temperature on Tropical Cyclone Potential Intensity Using a Single-Column Model. Journal of Climate, 2011, 24, 183-193.	1.2	82
52	Association of U.S. tornado occurrence with monthly environmental parameters. Geophysical Research Letters, 2012, 39, .	1.5	82
53	Projected changes in the physical climate of the Gulf Coast and Caribbean. Climatic Change, 2012, 112, 819-845.	1.7	81
54	Understanding Hadley Cell Expansion versus Contraction: Insights from Simplified Models and Implications for Recent Observations. Journal of Climate, 2013, 26, 4304-4321.	1.2	81

#	Article	IF	CITATIONS
55	A Simple Time-Dependent Model of SST Hot Spots. Journal of Climate, 2003, 16, 3978-3992.	1.2	79
56	On the impact angle of Hurricane Sandy's New Jersey landfall. Geophysical Research Letters, 2013, 40, 2312-2315.	1.5	79
57	Revisiting the Influence of the Quasi-Biennial Oscillation on Tropical Cyclone Activity. Journal of Climate, 2010, 23, 5810-5825.	1.2	78
58	The boundary layer contribution to intertropical convergence zones in the quasi-equilibrium tropical circulation model framework. Theoretical and Computational Fluid Dynamics, 2006, 20, 323-350.	0.9	77
59	Response of tropical sea surface temperature, precipitation, and tropical cycloneâ€related variables to changes in global and local forcing. Journal of Advances in Modeling Earth Systems, 2013, 5, 447-458.	1.3	77
60	Projected Future Seasonal Changes in Tropical Summer Climate. Journal of Climate, 2011, 24, 473-487.	1.2	74
61	Statistical–Dynamical Downscaling Projections of Tropical Cyclone Activity in a Warming Climate: Two Diverging Genesis Scenarios. Journal of Climate, 2020, 33, 4815-4834.	1.2	69
62	Direct Diagnoses of Stratosphere–Troposphere Exchange. Journals of the Atmospheric Sciences, 2000, 57, 3-16.	0.6	67
63	Multiple equilibria in a cloudâ€resolving model using the weak temperature gradient approximation. Journal of Geophysical Research, 2010, 115, .	3.3	67
64	Factors Controlling Rain on Small Tropical Islands: Diurnal Cycle, Large-Scale Wind Speed, and Topography. Journals of the Atmospheric Sciences, 2017, 74, 3515-3532.	0.6	67
65	Response of convection to relative sea surface temperature: Cloud-resolving simulations in two and three dimensions. Journal of Geophysical Research, 2011, 116, .	3.3	66
66	Influence of Western North Pacific Tropical Cyclones on Their Large-Scale Environment. Journals of the Atmospheric Sciences, 2005, 62, 3396-3407.	0.6	65
67	Seamless Precipitation Prediction Skill in the Tropics and Extratropics from a Global Model. Monthly Weather Review, 2014, 142, 1556-1569.	0.5	65
68	Responses of Tropical Deep Convection to the QBO: Cloud-Resolving Simulations. Journals of the Atmospheric Sciences, 2015, 72, 3625-3638.	0.6	65
69	Multiple equilibria in a singleâ€column model of the tropical atmosphere. Geophysical Research Letters, 2007, 34, .	1.5	63
70	Rain on small tropical islands. Journal of Geophysical Research, 2011, 116, .	3.3	62
71	Subseasonal Tropical Cyclone Genesis Prediction and MJO in the S2S Dataset. Weather and Forecasting, 2018, 33, 967-988.	0.5	62
72	An Empirical Relation between U.S. Tornado Activity and Monthly Environmental Parameters. Journal of Climate, 2014, 27, 2983-2999.	1.2	60

#	Article	IF	CITATIONS
73	Relationship between the potential and actual intensities of tropical cyclones on interannual time scales. Geophysical Research Letters, 2007, 34, .	1.5	59
74	Impact of the Tropopause Temperature on the Intensity of Tropical Cyclones: An Idealized Study Using a Mesoscale Model. Journals of the Atmospheric Sciences, 2014, 71, 4333-4348.	0.6	59
75	Model Hierarchies for Understanding Atmospheric Circulation. Reviews of Geophysics, 2019, 57, 250-280.	9.0	58
76	STAR TPC at RHIC. IEEE Transactions on Nuclear Science, 1997, 44, 671-678.	1.2	57
77	Propagation Characteristics of BSISO Indices. Geophysical Research Letters, 2018, 45, 9934-9943.	1.5	57
78	The Gill Model and the Weak Temperature Gradient Approximation. Journals of the Atmospheric Sciences, 2003, 60, 451-460.	0.6	55
79	The Influence of Natural Climate Variability on Tropical Cyclones, and Seasonal Forecasts of Tropical Cyclone Activity. World Scientific Series on Asia-Pacific Weather and Climate, 2010, , 325-360.	0.2	55
80	Western North Pacific Tropical Cyclone Model Tracks in Present and Future Climates. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9721-9744.	1.2	54
81	Understanding the Dynamics of Future Changes in Extreme Precipitation Intensity. Geophysical Research Letters, 2018, 45, 2870-2878.	1.5	54
82	Prediction and predictability of tropical intraseasonal convection: seasonal dependence and the Maritime Continent prediction barrier. Climate Dynamics, 2019, 52, 6015-6031.	1.7	54
83	Tropical Intraseasonal Variability in Version 3 of the GFDL Atmosphere Model. Journal of Climate, 2013, 26, 426-449.	1.2	53
84	Moist Dynamics and Orographic Precipitation in Northern and Central California during the New Year's Flood of 1997. Monthly Weather Review, 2005, 133, 1594-1612.	0.5	52
85	The influence of the quasi-biennial oscillation on the Madden–Julian oscillation. Nature Reviews Earth & Environment, 2021, 2, 477-489.	12.2	50
86	Cloudâ€resolving simulation of TOGA OARE using parameterized largeâ€scale dynamics. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6290-6301.	1.2	48
87	The Impact of the QBO on MJO Convection in Cloud-Resolving Simulations. Journals of the Atmospheric Sciences, 2019, 76, 669-688.	0.6	48
88	Diagnosis of Zonal Mean Relative Humidity Changes in a Warmer Climate. Journal of Climate, 2010, 23, 4556-4569.	1.2	46
89	Response of Atmospheric Convection to Vertical Wind Shear: Cloud-System-Resolving Simulations with Parameterized Large-Scale Circulation. Part I: Specified Radiative Cooling. Journals of the Atmospheric Sciences, 2014, 71, 2976-2993.	0.6	46
90	Intercomparison of methods of coupling between convection and largeâ€scale circulation: 1. Comparison over uniform surface conditions. Journal of Advances in Modeling Earth Systems, 2015, 7, 1576-1601.	1.3	46

#	Article	IF	CITATIONS
91	Tropical Cyclone Frequency. Earth's Future, 2021, 9, .	2.4	46
92	Instability of the axisymmetric monsoon flow and intraseasonal oscillation. Journal of Geophysical Research, 2008, 113, .	3.3	45
93	Probabilistic Multiple Linear Regression Modeling for Tropical Cyclone Intensity. Monthly Weather Review, 2015, 143, 933-954.	0.5	45
94	The Eastern Pacific ITCZ during the Boreal Spring. Journals of the Atmospheric Sciences, 2005, 62, 1157-1174.	0.6	44
95	Fog and rain in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11473-11477.	3.3	44
96	Changes in the structure and propagation of the <scp>M</scp> JO with increasing <scp>C</scp> O ₂ . Journal of Advances in Modeling Earth Systems, 2017, 9, 1251-1268.	1.3	44
97	The Effect of Greenhouse Gas–Induced Changes in SST on the Annual Cycle of Zonal Mean Tropical Precipitation. Journal of Climate, 2014, 27, 4544-4565.	1.2	43
98	A Global Climatology of Extratropical Transition. Part I: Characteristics across Basins. Journal of Climate, 2019, 32, 3557-3582.	1.2	42
99	Characteristics of Model Tropical Cyclone Climatology and the Large-Scale Environment. Journal of Climate, 2020, 33, 4463-4487.	1.2	42
100	Methods of Calculating Transport across the Polar Vortex Edge. Journals of the Atmospheric Sciences, 1997, 54, 2241-2260.	0.6	41
101	Tropical cyclone triggering of sediment discharge in Taiwan. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	41
102	A mechanism denial study on the Madden-Julian Oscillation. Journal of Advances in Modeling Earth Systems, 2011, 3, .	1.3	41
103	Modeling the <scp>MJO</scp> in a cloudâ€resolving model with parameterized largeâ€scale dynamics: Vertical structure, radiation, and horizontal advection of dry air. Journal of Advances in Modeling Earth Systems, 2016, 8, 121-139.	1.3	41
104	Influence of condensate evaporation on water vapor and its stable isotopes in a GCM. Geophysical Research Letters, 2009, 36, .	1.5	40
105	Seamless precipitation prediction skill comparison between two global models. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 374-383.	1.0	39
106	Multiple Equilibria of the Hadley Circulation in an Intermediate-Complexity Axisymmetric Model. Journal of Climate, 2010, 23, 1760-1778.	1.2	37
107	Dry and moist dynamics shape regional patterns of extreme precipitation sensitivity. Proceedings of the United States of America, 2020, 117, 8757-8763.	3.3	37
108	Process-Oriented Evaluation of Climate and Weather Forecasting Models. Bulletin of the American Meteorological Society, 2019, 100, 1665-1686.	1.7	36

#	Article	IF	CITATIONS
109	Ocean–Atmosphere Coupling in the Monsoon Intraseasonal Oscillation: A Simple Model Study. Journal of Climate, 2008, 21, 5254-5270.	1.2	35
110	Impact of imposed drying on deep convection in a cloudâ€resolving model. Journal of Geophysical Research, 2012, 117, .	3.3	33
111	Seasonal Noise Versus Subseasonal Signal: Forecasts of California Precipitation During the Unusual Winters of 2015–2016 and 2016–2017. Geophysical Research Letters, 2017, 44, 9513-9520.	1.5	33
112	Modeling the Interaction between Quasigeostrophic Vertical Motion and Convection in a Single Column. Journals of the Atmospheric Sciences, 2016, 73, 1101-1117.	0.6	32
113	Characterization of Moist Processes Associated With Changes in the Propagation of the MJO With Increasing CO ₂ . Journal of Advances in Modeling Earth Systems, 2017, 9, 2946-2967.	1.3	32
114	The Hadley Circulation and the Weak Temperature Gradient Approximation. Journals of the Atmospheric Sciences, 2002, 59, 1744-1752.	0.6	31
115	The MJOâ€Kelvin wave transition. Geophysical Research Letters, 2012, 39, .	1.5	31
116	Model projections of atmospheric steering of Sandy-like superstorms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15211-15215.	3.3	30
117	Moist Static Energy Budget Analysis of Tropical Cyclone Intensification in High-Resolution Climate Models. Journal of Climate, 2019, 32, 6071-6095.	1.2	30
118	An Extreme Value Model for U.S. Hail Size. Monthly Weather Review, 2017, 145, 4501-4519.	0.5	29
119	Process-Oriented Diagnosis of Tropical Cyclones in High-Resolution GCMs. Journal of Climate, 2018, 31, 1685-1702.	1.2	28
120	Poleward-Propagating Intraseasonal Monsoon Disturbances in an Intermediate-Complexity Axisymmetric Model. Journals of the Atmospheric Sciences, 2008, 65, 470-489.	0.6	27
121	An Idealized Prototype for Large-Scale Land–Atmosphere Coupling. Journal of Climate, 2013, 26, 2379-2389.	1.2	26
122	Projected Twenty-First-Century Changes in the Length of the Tropical Cyclone Season. Journal of Climate, 2015, 28, 6181-6192.	1.2	26
123	Tropical Cyclone Prediction on Subseasonal Time-Scales. Tropical Cyclone Research and Review, 2019, 8, 150-165.	1.0	26
124	Autoregressive Modeling for Tropical Cyclone Intensity Climatology. Journal of Climate, 2016, 29, 7815-7830.	1.2	25
125	Forcings and feedbacks on convection in the 2010 Pakistan flood: Modeling extreme precipitation with interactive largeâ€scale ascent. Journal of Advances in Modeling Earth Systems, 2016, 8, 1055-1072.	1.3	25
126	Impact of the QBO on Prediction and Predictability of the MJO Convection. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11766-11782.	1.2	25

#	Article	IF	CITATIONS
127	Regional modeling of decadal rainfall variability over the Sahel. Climate Dynamics, 2007, 29, 89-99.	1.7	24
128	The Effect of Imposed Drying on Parameterized Deep Convection. Journals of the Atmospheric Sciences, 2009, 66, 2085-2096.	0.6	24
129	Kinetic Energy Budget for the Madden–Julian Oscillation in a Multiscale Framework. Journal of Climate, 2012, 25, 5386-5403.	1.2	24
130	Formation of tropical storms in an atmospheric general circulation model. Tellus, Series A: Dynamic Meteorology and Oceanography, 2004, 56, 56-67.	0.8	23
131	On the Wavelength of the Rossby Waves Radiated by Tropical Cyclones. Journals of the Atmospheric Sciences, 2008, 65, 644-654.	0.6	23
132	Intraseasonal Variability and Seasonal March of the Moist Static Energy Budget over the Eastern Maritime Continent during CINDY2011/DYNAMO. Journal of the Meteorological Society of Japan, 2015, 93A, 81-100.	0.7	22
133	Potentially Extreme Population Displacement and Concentration in the Tropics Under Non-Extreme Warming. Scientific Reports, 2016, 6, 25697.	1.6	22
134	Subseasonal Predictions of Tropical Cyclone Occurrence and ACE in the S2S Dataset. Weather and Forecasting, 2020, 35, 921-938.	0.5	22
135	Large-scale waves interacting with deep convection in idealized mesoscale model simulations. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 55, 45.	0.8	20
136	An observational study of multiple tropical cyclone events in the western north Pacific. Tellus, Series A: Dynamic Meteorology and Oceanography, 2010, 62, 256-265.	0.8	20
137	Intercomparison of methods of coupling between convection and largeâ€scale circulation: 2. Comparison over nonuniform surface conditions. Journal of Advances in Modeling Earth Systems, 2016, 8, 387-405.	1.3	20
138	Azimuthally Averaged Wind and Thermodynamic Structures of Tropical Cyclones in Global Climate Models and Their Sensitivity to Horizontal Resolution. Journal of Climate, 2020, 33, 1575-1595.	1.2	20
139	Water vapor as an active scalar in tropical atmospheric dynamics. Chaos, 2002, 12, 451-459.	1.0	19
140	Simulations of cloudâ€radiation interaction using largeâ€scale forcing derived from the CINDY/DYNAMO northern sounding array. Journal of Advances in Modeling Earth Systems, 2015, 7, 1472-1498.	1.3	19
141	On the Coexistence of an Evaporation Minimum and Precipitation Maximum in the Warm Pool. Journal of Climate, 2003, 16, 1003-1009.	1.2	19
142	A Global Climatology of Extratropical Transition. Part II: Statistical Performance of the Cyclone Phase Space. Journal of Climate, 2019, 32, 3583-3597.	1.2	18
143	Tropical Cyclone Hazard to Mumbai in the Recent Historical Climate. Monthly Weather Review, 2019, 147, 2355-2366.	0.5	18
144	Aerosol versus Greenhouse Gas Effects on Tropical Cyclone Potential Intensity and the Hydrologic Cycle. Journal of Climate, 2019, 32, 5511-5527.	1.2	17

#	Article	IF	CITATIONS
145	The MJO-QBO Relationship in a GCM with Stratospheric Nudging. Journal of Climate, 2021, , 1-69.	1.2	17
146	Usable climate science is adaptation science. Climatic Change, 2021, 166, 1.	1.7	17
147	Quantitative Diagnostics of Mixing in a Shallow Water Model of the Stratosphere. Journals of the Atmospheric Sciences, 1999, 56, 2811-2829.	0.6	16
148	Large-scale waves interacting with deep convection in idealized mesoscale model simulations. Tellus, Series A: Dynamic Meteorology and Oceanography, 2003, 55, 45-60.	0.8	16
149	The Mesoscale Characteristics of Tropical Oceanic Precipitation during Kelvin and Mixed Rossby–Gravity Wave Events. Monthly Weather Review, 2008, 136, 3446-3464.	0.5	16
150	A role for ocean biota in tropical intraseasonal atmospheric variability. Geophysical Research Letters, 2003, 30, .	1.5	15
151	Formation of tropical storms in an atmospheric general circulation model. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 56, 56.	0.8	15
152	Effect of Surface Fluxes versus Radiative Heating on Tropical Deep Convection. Journals of the Atmospheric Sciences, 2015, 72, 3378-3388.	0.6	15
153	Role of the Convection Scheme in Modeling Initiation and Intensification of Tropical Depressions over the North Atlantic. Monthly Weather Review, 2017, 145, 1495-1509.	0.5	15
154	Localness in Climate Change. Comparative Studies of South Asia, Africa and the Middle East, 2020, 40, 7-16.	0.1	15
155	Implementing the Weak Temperature Gradient Approximation with Full Vertical Structure. Monthly Weather Review, 2004, 132, 662-669.	0.5	14
156	Radiative–Convective Equilibrium over a Land Surface. Journal of Climate, 2014, 27, 8611-8629.	1.2	14
157	A Unified Moisture Mode Theory for the Madden–Julian Oscillation and the Boreal Summer Intraseasonal Oscillation. Journal of Climate, 2022, 35, 1267-1291.	1.2	14
158	The Impact of the Stratosphere on the MJO in a Forecast Model. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032106.	1.2	13
159	Application of the Cyclone Phase Space to Extratropical Transition in a Global Climate Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001878.	1.3	13
160	On the Dynamics of Easterly Waves, Monsoon Depressions, and Tropical Depression Type Disturbances. Journal of the Meteorological Society of Japan, 2000, 78, 167-173.	0.7	12
161	Northern hemisphere tropical cyclones during the quasi-El Niño of late 2014. Natural Hazards, 2016, 83, 1717-1729.	1.6	12
162	Dynamics-oriented diagnostics for the Madden-Julian Oscillation. Journal of Climate, 2018, , .	1.2	12

#	Article	IF	CITATIONS
163	Summary of workshop on sub-seasonal to seasonal predictability of extreme weather and climate. Npj Climate and Atmospheric Science, 2018, 1, .	2.6	12
164	Idealized Hot Spot Experiments with a General Circulation Model. Journal of Climate, 2007, 20, 908-925.	1.2	11
165	Singleâ€layer axisymmetric model for a Hadley circulation with parameterized eddy momentum forcing. Journal of Advances in Modeling Earth Systems, 2009, 1, .	1.3	11
166	Tropical cyclones in the GISS ModelE2. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 68, 31494.	0.8	11
167	Response of Atmospheric Convection to Vertical Wind Shear: Cloud-System-Resolving Simulations with Parameterized Large-Scale Circulation. Part II: Effect of Interactive Radiation. Journals of the Atmospheric Sciences, 2016, 73, 199-209.	0.6	11
168	Chapter 8 Simple Models of Ensemble-Averaged Tropical Precipitation and Surface Wind, Given the Sea Surface Temperature. , 2008, , 219-251.		11
169	The Big Brother Experiment and seasonal predictability in the NCEP regional spectral model. Climate Dynamics, 2006, 27, 69-82.	1.7	10
170	Diffusion versus Nonlocal Models of Stratospheric Mixing, in Theory and Practice. Journals of the Atmospheric Sciences, 1999, 56, 2571-2584.	0.6	9
171	Observed radar reflectivity in convectively coupled Kelvin and mixed Rossby-gravity waves. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	9
172	A Tropospheric Emission Spectrometer HDO/H ₂ O retrieval simulator for climate models. Atmospheric Chemistry and Physics, 2012, 12, 10485-10504.	1.9	9
173	Convection, Cloud-Radiative Feedbacks and Thermodynamic Ocean Coupling in Simple Models of the Walker Circulation. Geophysical Monograph Series, 0, , 393-405.	0.1	9
174	A Moist Entropy Budget View of the South Asian Summer Monsoon Onset. Geophysical Research Letters, 2019, 46, 4476-4484.	1.5	9
175	Variability in QBO Temperature Anomalies on Annual and Decadal Time Scales. Journal of Climate, 2021, 34, 589-605.	1.2	8
176	Nearâ€Inertial Wave Propagation in the Wake of Super Typhoon Mangkhut: Measurements From a Profiling Float Array. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016749.	1.0	8
177	Asymptotic solutions of the axisymmetric moist Hadley circulation in a model with two vertical modes. Theoretical and Computational Fluid Dynamics, 2006, 20, 443-467.	0.9	7
178	Large-Scale State and Evolution of the Atmosphere and Ocean during PISTON 2018. Journal of Climate, 2021, 34, 5017-5035.	1.2	7
179	Raised bar for rain. Nature Geoscience, 2010, 3, 821-822.	5.4	6
180	Understanding differences in tropical cyclone activity over the Arabian Sea and Bay of Bengal. Mausam, 2021, 72, 187-198.	0.1	6

#	Article	IF	CITATIONS
181	Comparison of a single olumn model in weak temperature gradient mode to its parent AGCM. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1025-1034.	1.0	5
182	Propagating Mechanisms of the 2016 Summer BSISO Event: Air‧ea Coupling, Vorticity, and Moisture. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033284.	1.2	5
183	Understanding the Drivers of Variability in Severe Convection: Bringing Together the Scientific and Insurance Communities. Bulletin of the American Meteorological Society, 2016, 97, ES221-ES223.	1.7	5
184	A Multivariate Index for Tropical Intraseasonal Oscillations Based on the Seasonallyâ€Varying Modal Structures. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
185	Workshop on Tropical Cyclones and Climate. Bulletin of the American Meteorological Society, 2007, 88, 389-391.	1.7	4
186	Implementation of the Quasiâ€equilibrium Tropical Circulation Model 2 (QTCM2): Global simulations and convection sensitivity to free tropospheric moisture. Journal of Advances in Modeling Earth Systems, 2012, 4, .	1.3	4
187	Extreme Events. , 2018, , 3-12.		4
188	A Statistical Model to Predict the Extratropical Transition of Tropical Cyclones. Weather and Forecasting, 2020, 35, 451-466.	0.5	4
189	Assessing the Vertical Velocity of the East Pacific ITCZ. Geophysical Research Letters, 2022, 49, .	1.5	3
190	The Influence of Intraseasonal Oscillations on Humid Heat in the Persian Gulf and South Asia. Journal of Climate, 2022, 35, 4309-4329.	1.2	3
191	New York State Hurricane Hazard: History and Future Projections. Journal of Applied Meteorology and Climatology, 2022, 61, 613-629.	0.6	3
192	An Investigation of Tropical Cyclone Development Pathways as an Indicator of Extratropical Transition. Journal of the Meteorological Society of Japan, 2022, 100, 707-724.	0.7	3
193	Nonlinear shallow-water solutions using the weak temperature gradient approximation. Theoretical and Computational Fluid Dynamics, 2006, 20, 469-484.	0.9	2
194	Global Circulation of the Atmosphere (2004). Bulletin of the American Meteorological Society, 2006, 87, 807-810.	1.7	2
195	Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American Meteorological Society, 2015, 96, 1440.	1.7	2
196	Evolution of Tropical Cyclone Properties Across the Development Cycle of the GISS 3 Global Climate Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	2
197	Correction to "A role for ocean biota in tropical intraseasonal atmospheric variability― Geophysical Research Letters, 2003, 30, .	1.5	1
198	The Water Cycle across Scales. Bulletin of the American Meteorological Society, 2005, 86, 1743-1746.	1.7	1

ADAM H SOBEL

#	Article	IF	CITATIONS
199	Sahel climate change: Workshop on Sahel climate change, Columbia University, New York, 19-21 March 2007. Eos, 2007, 88, 295-295.	0.1	1
200	Coupling with ocean mixed layer leads to intraseasonal variability in tropical deep convection: Evidence from cloudâ€resolving simulations. Journal of Advances in Modeling Earth Systems, 2017, 9, 616-626.	1.3	1
201	The Moisture Mode Framework of the Madden–Julian Oscillation. World Scientific Series on Asia-Pacific Weather and Climate, 2021, , 273-287.	0.2	1
202	Making the transition to a green economy: What is our responsibility as citizens?. Bulletin of the Atomic Scientists, 2021, 77, 67-69.	0.2	1
203	On the Allâ€India Rainfall Index and Subâ€India Rainfall Heterogeneity. Geophysical Research Letters, 2022, 49, .	1.5	1
204	Introduction: Critical and historical perspectives on usable climate science. Climatic Change, 2022, 172, .	1.7	1
205	A Filtered Model for the Tropical Intraseasonal Moisture Mode. Geophysical Research Letters, 2022, 49, .	1.5	1
206	educational affairs. Bulletin of the American Meteorological Society, 1996, 77, 2919-2924.	1.7	0
207	Cross-channel advective–diffusive transport by a monochromatic traveling wave. Physics of Fluids, 2000, 12, 1377-1381.	1.6	0
208	Foreword: R. Alan Plumb—A brief biographical sketch and personal tribute. Geophysical Monograph Series, 2010, , vii-xi.	0.1	0