
Rik L De Swart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8904287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Absence of COVID-19-associated changes in plasma coagulation proteins and pulmonary thrombosis in the ferret model. Thrombosis Research, 2022, 210, 6-11.	1.7	3
2	Location matters in RSV protection. Cell Host and Microbe, 2022, 30, 15-16.	11.0	3
3	Modeling Infection and Tropism of Human Parainfluenza Virus Type 3 in Ferrets. MBio, 2022, 13, e0383121.	4.1	5
4	Repurposing an In Vitro Measles Virus Dissemination Assay for Screening of Antiviral Compounds. Viruses, 2022, 14, 1186.	3.3	4
5	Potency of Fusion-Inhibitory Lipopeptides against SARS-CoV-2 Variants of Concern. MBio, 2022, 13, .	4.1	9
6	Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science, 2021, 371, 1379-1382.	12.6	158
7	Human Respiratory Syncytial Virus Subgroup A and B Infections in Nasal, Bronchial, Small-Airway, and Organoid-Derived Respiratory Cultures. MSphere, 2021, 6, .	2.9	14
8	SARS-CoV-2 variants of concern partially escape humoral but not T cell responses in COVID-19 convalescent donors and vaccine recipients. Science Immunology, 2021, 6, .	11.9	455
9	Comparable Infection Level and Tropism of Measles Virus and Canine Distemper Virus in Organotypic Brain Slice Cultures Obtained from Natural Host Species. Viruses, 2021, 13, 1582.	3.3	1
10	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
11	In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells – A Systematic Review. Frontiers in Immunology, 2021, 12, 683002.	4.8	28
12	Sustained Replication of Synthetic Canine Distemper Virus Defective Genomes <i>In Vitro</i> and <i>In Vivo</i> . MSphere, 2021, 6, e0053721.	2.9	9
13	Animal models of SARS-CoV-2 transmission. Current Opinion in Virology, 2021, 50, 8-16.	5.4	21
14	Measles seroprevalence among Dutch travelling families. Travel Medicine and Infectious Disease, 2021, 44, 102194.	3.0	2
15	How the COVID-19 pandemic highlights the necessity of animal research. Current Biology, 2020, 30, R1014-R1018.	3.9	26
16	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
17	Editorial overview: Combating measles during a COVID-19 pandemic. Current Opinion in Virology, 2020, 41, iii-vii.	5.4	3
18	Human Paramyxovirus Infections Induce T Cells That Cross-React with Zoonotic Henipaviruses. MBio, 2020, 11, .	4.1	4

#	Article	IF	CITATIONS
19	Measles pathogenesis, immune suppression and animal models. Current Opinion in Virology, 2020, 41, 31-37.	5.4	19
20	Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science, 2020, 368, 1012-1015.	12.6	802
21	In vivo comparison of a laboratory-adapted and clinical-isolate-based recombinant human respiratory syncytial virus. Journal of General Virology, 2020, 101, 1037-1046.	2.9	4
22	Phenotype and kinetics of SARS-CoV-2–specific T cells in COVID-19 patients with acute respiratory distress syndrome. Science Immunology, 2020, 5, .	11.9	851
23	Measles skin rash: Infection of lymphoid and myeloid cells in the dermis precedes viral dissemination to the epidermis. PLoS Pathogens, 2020, 16, e1008253.	4.7	13
24	Morbillivirus Infections in Non-human Primates: From Humans to Monkeys and Back Again. , 2020, , 205-231.		0
25	Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science, 2019, 366, 599-606.	12.6	294
26	Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Science Immunology, 2019, 4, .	11.9	98
27	Additional Evidence on Serological Correlates of Protection against Measles: An Observational Cohort Study among Once Vaccinated Children Exposed to Measles. Vaccines, 2019, 7, 158.	4.4	7
28	Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.	2.1	70
29	Species-Specific Colocalization of Middle East Respiratory Syndrome Coronavirus Attachment and Entry Receptors. Journal of Virology, 2019, 93, .	3.4	33
30	Taxonomy of the order Mononegavirales: update 2019. Archives of Virology, 2019, 164, 1967-1980.	2.1	224
31	Interferon-Induced Transmembrane Protein 1 Restricts Replication of Viruses That Enter Cells via the Plasma Membrane. Journal of Virology, 2019, 93, .	3.4	48
32	<i>In Vitro</i> Measles Virus Infection of Human Lymphocyte Subsets Demonstrates High Susceptibility and Permissiveness of both Naive and Memory B Cells. Journal of Virology, 2018, 92, .	3.4	43
33	Complete Genome Sequences of Six Measles Virus Strains. Genome Announcements, 2018, 6, .	0.8	8
34	Impact and longevity of measles-associated immune suppression: a matched cohort study using data from the THIN general practice database in the UK. BMJ Open, 2018, 8, e021465.	1.9	38
35	Studies into the mechanism of measles-associated immune suppression during a measles outbreak in the Netherlands. Nature Communications, 2018, 9, 4944.	12.8	83
36	Modeling the measles paradox reveals the importance of cellular immunity in regulating viral clearance. PLoS Pathogens, 2018, 14, e1007493.	4.7	11

#	Article	IF	CITATIONS
37	Paramyxovirus Infections in Ex Vivo Lung Slice Cultures of Different Host Species. Methods and Protocols, 2018, 1, 12.	2.0	9
38	Drivers of airborne human-to-human pathogen transmission. Current Opinion in Virology, 2017, 22, 22-29.	5.4	81
39	Modified Vaccinia Virus Ankara Preferentially Targets Antigen Presenting Cells In Vitro, Ex Vivo and In Vivo. Scientific Reports, 2017, 7, 8580.	3.3	34
40	Needle-free delivery of measles virus vaccine to the lower respiratory tract of non-human primates elicits optimal immunity and protection. Npj Vaccines, 2017, 2, 22.	6.0	32
41	Measles: What we have learned from non-human primate models. Drug Discovery Today: Disease Models, 2017, 23, 31-34.	1.2	6
42	Delineating morbillivirus entry, dissemination and airborne transmission by studying in vivo competition of multicolor canine distemper viruses in ferrets. PLoS Pathogens, 2017, 13, e1006371.	4.7	37
43	Ferrets as a Novel Animal Model for Studying Human Respiratory Syncytial Virus Infections in Immunocompetent and Immunocompromised Hosts. Viruses, 2016, 8, 168.	3.3	42
44	Measles Virus Host Invasion and Pathogenesis. Viruses, 2016, 8, 210.	3.3	123
45	Measles. Nature Reviews Disease Primers, 2016, 2, 16049.	30.5	184
46	Intrathecal CD4 ⁺ and CD8 ⁺ T ell responses to endogenously synthesized candidate diseaseâ€associated human autoantigens in multiple sclerosis patients. European Journal of Immunology, 2016, 46, 347-353.	2.9	11
47	Optimization and Dose Estimation of Aerosol Delivery to Non-Human Primates. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2016, 29, 281-287.	1.4	20
48	Limited <i>In Vivo</i> Production of Type I or Type III Interferon After Infection of Macaques with Vaccine or Wild-Type Strains of Measles Virus. Journal of Interferon and Cytokine Research, 2015, 35, 292-301.	1.2	20
49	Morbillivirus Infections: An Introduction. Viruses, 2015, 7, 699-706.	3.3	69
50	Recombinant Subgroup B Human Respiratory Syncytial Virus Expressing Enhanced Green Fluorescent Protein Efficiently Replicates in Primary Human Cells and Is Virulent in Cotton Rats. Journal of Virology, 2015, 89, 2849-2856.	3.4	26
51	Pathological consequences of systemic measles virus infection. Journal of Pathology, 2015, 235, 253-265.	4.5	69
52	Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science, 2015, 348, 694-699.	12.6	319
53	Live-Attenuated Measles Virus Vaccine Targets Dendritic Cells and Macrophages in Muscle of Nonhuman Primates. Journal of Virology, 2015, 89, 2192-2200.	3.4	53
	Streptococcus pneumoniae Enhances Human Respiratory Syncytial Virus Infection In Vitro and In Vivo.		

#	Article	IF	CITATIONS
55	Phocine Distemper Virus: Current Knowledge and Future Directions. Viruses, 2014, 6, 5093-5134.	3.3	114
56	Measles Immune Suppression: Functional Impairment or Numbers Game?. PLoS Pathogens, 2014, 10, e1004482.	4.7	53
57	Novel Vaccine Regimen Elicits Strong Airway Immune Responses and Control of Respiratory Syncytial Virus in Nonhuman Primates. Journal of Virology, 2014, 88, 3997-4007.	3.4	23
58	Using the ferret model to study morbillivirus entry, spread, transmission and cross-species infection. Current Opinion in Virology, 2014, 4, 15-23.	5.4	40
59	Measles Virus Suppresses RIG-I-like Receptor Activation in Dendritic Cells via DC-SIGN-Mediated Inhibition of PP1 Phosphatases. Cell Host and Microbe, 2014, 16, 31-42.	11.0	89
60	Measles Vaccination of Nonhuman Primates Provides Partial Protection against Infection with Canine Distemper Virus. Journal of Virology, 2014, 88, 4423-4433.	3.4	44
61	Development of a multivalent paediatric human vaccine for rabies virus in combination with Measles–Mumps–Rubella (MMR). Vaccine, 2014, 32, 2020-2021.	3.8	10
62	The use of temperature loggers in laboratory animal experiments for pathogenesis research and evaluation of prevention and treatment of infectious diseases. Journal of Pharmacological and Toxicological Methods, 2014, 70, 350.	0.7	0
63	Infection of lymphoid tissues in the macaque upper respiratory tract contributes to the emergence of transmissible measles virus. Journal of General Virology, 2013, 94, 1933-1944.	2.9	39
64	Paramyxovirus infections in ex vivo lung slice cultures of different host species. Journal of Virological Methods, 2013, 193, 159-165.	2.1	25
65	Infection-enhancing lipopeptides do not improve intranasal immunization of cotton rats with a delta-G candidate live-attenuated human respiratory syncytial virus vaccine. Human Vaccines and Immunotherapeutics, 2013, 9, 2578-2583.	3.3	1
66	Complete Genome Sequence of Phocine Distemper Virus Isolated from a Harbor Seal (Phoca vitulina) during the 1988 North Sea Epidemic. Genome Announcements, 2013, 1, .	0.8	9
67	T-Cell Tropism of Simian Varicella Virus during Primary Infection. PLoS Pathogens, 2013, 9, e1003368.	4.7	44
68	Measles Virus Infection of Epithelial Cells in the Macaque Upper Respiratory Tract Is Mediated by Subepithelial Immune Cells. Journal of Virology, 2013, 87, 4033-4042.	3.4	59
69	Measles Immune Suppression: Lessons from the Macaque Model. PLoS Pathogens, 2012, 8, e1002885.	4.7	146
70	Recombinant Canine Distemper Virus Strain Snyder Hill Expressing Green or Red Fluorescent Proteins Causes Meningoencephalitis in the Ferret. Journal of Virology, 2012, 86, 7508-7519.	3.4	44
71	Evaluating measles vaccines: can we assess cellular immunity?. Expert Review of Vaccines, 2012, 11, 779-782.	4.4	11
72	The pathogenesis of measles. Current Opinion in Virology, 2012, 2, 248-255.	5.4	90

#	Article	IF	CITATIONS
73	Rinderpest eradication: lessons for measles eradication?. Current Opinion in Virology, 2012, 2, 330-334.	5.4	42
74	Evaluation of synthetic infection-enhancing lipopeptides as adjuvants for a live-attenuated canine distemper virus vaccine administered intra-nasally to ferrets. Vaccine, 2012, 30, 5073-5080.	3.8	8
75	A Prominent Role for DC-SIGN+ Dendritic Cells in Initiation and Dissemination of Measles Virus Infection in Non-Human Primates. PLoS ONE, 2012, 7, e49573.	2.5	35
76	Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection. Clinical Microbiology and Infection, 2011, 17, 1840-1844.	6.0	51
77	Human Langerhans cells capture measles virus through Langerin and present viral antigens to CD4 ⁺ T cells but are incapable of crossâ€presentation. European Journal of Immunology, 2011, 41, 2619-2631.	2.9	85
78	Early Target Cells of Measles Virus after Aerosol Infection of Non-Human Primates. PLoS Pathogens, 2011, 7, e1001263.	4.7	181
79	Specific CD8 ⁺ Tâ€lymphocytes control dissemination of measles virus. European Journal of Immunology, 2010, 40, 388-395.	2.9	29
80	<i>In Vivo</i> Tropism of Attenuated and Pathogenic Measles Virus Expressing Green Fluorescent Protein in Macaques. Journal of Virology, 2010, 84, 4714-4724.	3.4	95
81	The Synthetic Bacterial Lipopeptide Pam3CSK4 Modulates Respiratory Syncytial Virus Infection Independent of TLR Activation. PLoS Pathogens, 2010, 6, e1001049.	4.7	54
82	Wild-type measles virus infection of primary epithelial cells occurs via the basolateral surface without syncytium formation or release of infectious virus. Journal of General Virology, 2010, 91, 971-979.	2.9	48
83	Depletion of measles virus glycoprotein-specific antibodies from human sera reveals genotype-specific neutralizing antibodies. Journal of General Virology, 2009, 90, 2982-2989.	2.9	28
84	Measles Studies in the Macaque Model. Current Topics in Microbiology and Immunology, 2009, 330, 55-72.	1.1	33
85	Measles vaccination: new strategies and formulations. Expert Review of Vaccines, 2008, 7, 1215-1223.	4.4	23
86	Immunogenicity and efficacy of two candidate human metapneumovirus vaccines in cynomolgus macaques. Vaccine, 2008, 26, 4224-4230.	3.8	45
87	Air travel as a risk factor for introduction of measles in a highly vaccinated population. Vaccine, 2008, 26, 5775-5777.	3.8	16
88	Impaired cellular immune response in harbour seals (<i>Phoca vitulina</i>) feeding on environmentally contaminated herring. Clinical and Experimental Immunology, 2008, 101, 480-486.	2.6	85
89	The Pathogenesis of Measles Revisited. Pediatric Infectious Disease Journal, 2008, 27, S84-S88.	2.0	20
90	Introduction. Pediatric Infectious Disease Journal, 2008, 27, S53.	2.0	1

#	Article	IF	CITATIONS
91	DC-SIGN and CD150 Have Distinct Roles in Transmission of Measles Virus from Dendritic Cells to T-Lymphocytes. PLoS Pathogens, 2008, 4, e1000049.	4.7	82
92	Predominant Infection of CD150+ Lymphocytes and Dendritic Cells during Measles Virus Infection of Macaques. PLoS Pathogens, 2007, 3, e178.	4.7	226
93	Infection of cynomolgus macaques (Macaca fascicularis) and rhesus macaques (Macaca mulatta) with different wild-type measles viruses. Journal of General Virology, 2007, 88, 2028-2034.	2.9	59
94	Experimental infection of macaques with human metapneumovirus induces transient protective immunity. Journal of General Virology, 2007, 88, 1251-1259.	2.9	47
95	Measles vaccination of macaques by dry powder inhalation. Vaccine, 2007, 25, 1183-1190.	3.8	55
96	Immunization of macaques with formalin-inactivated human metapneumovirus induces hypersensitivity to hMPV infection. Vaccine, 2007, 25, 8518-8528.	3.8	51
97	T Cell Responses to Respiratory Syncytial Virus Fusion and Attachment Proteins in Human Peripheral Blood Mononuclear Cells. Viral Immunology, 2006, 19, 669-678.	1.3	8
98	Measles vaccination effectiveness among children under 5 years of age in Kampala, Uganda. Vaccine, 2006, 24, 4111-4115.	3.8	22
99	Aerosol measles vaccination in macaques: Preclinical studies of immune responses and safety. Vaccine, 2006, 24, 6424-6436.	3.8	34
100	Measles virus-specific antibody levels in Sudanese infants: a prospective study using filter-paper blood samples. Epidemiology and Infection, 2006, 134, 79-85.	2.1	11
101	Relative Contributions of Measles Virus Hemagglutinin- and Fusion Protein-Specific Serum Antibodies to Virus Neutralization. Journal of Virology, 2005, 79, 11547-11551.	3.4	84
102	Development of a semi-quantitative real-time RT-PCR for the detection of measles virus. Journal of Clinical Virology, 2005, 32, 313-317.	3.1	33
103	Antigenic and Genetic Variability of Human Metapneumoviruses. Emerging Infectious Diseases, 2004, 10, 658-666.	4.3	329
104	Identification of a Common HLA-DP4-Restricted T-Cell Epitope in the Conserved Region of the Respiratory Syncytial Virus G Protein. Journal of Virology, 2004, 78, 1775-1781.	3.4	38
105	Measles virus protein-specific IgM, IgA, and IgG subclass responses during the acute and convalescent phase of infection. Journal of Medical Virology, 2004, 72, 290-298.	5.0	36
106	Surveillance of measles in the Sudan using filter paper blood samples. Journal of Medical Virology, 2004, 73, 624-630.	5.0	27
107	Administration of an insulin powder to the lungs of cynomolgus monkeys using a Penn Century insufflator. International Journal of Pharmaceutics, 2004, 269, 523-527.	5.2	20
108	Evaluation of BBG2Na in infant macaques: specific immune responses after vaccination and RSV challenge. Vaccine, 2004, 22, 915-922.	3.8	45

#	Article	IF	CITATIONS
109	Vaccination of infant macaques with a recombinant modified vaccinia virus Ankara expressing the respiratory syncytial virus F and G genes does not predispose for immunopathology. Vaccine, 2004, 22, 923-926.	3.8	32
110	An adenoviral type 5 vector carrying a type 35 fiber as a vaccine vehicle: DC targeting, cross neutralization, and immunogenicity. Vaccine, 2004, 22, 3035-3044.	3.8	69
111	Experimental vaccines against measles in a world of changing epidemiology. International Journal for Parasitology, 2003, 33, 525-545.	3.1	32
112	Moderate local and systemic respiratory syncytial virus-specific T-cell responses upon mild or subclinical RSV infection. Journal of Medical Virology, 2003, 70, 309-318.	5.0	25
113	Vaccination against measles: a neverending story. Expert Review of Vaccines, 2002, 1, 151-159.	4.4	27
114	The effects of chemical contaminants on immune function in harbour seals. New Perspectives, 2002, , .	0.2	0
115	Priming of measles virus-specific humoral- and cellular-immune responses in macaques by DNA vaccination. Vaccine, 2002, 20, 2022-2026.	3.8	22
116	Enteric administration of a live attenuated measles vaccine does not induce protective immunity in a macaque model. Vaccine, 2002, 20, 2906-2912.	3.8	7
117	Longevity of neutralizing antibody levels in macaques vaccinated with Quil A-adjuvanted measles vaccine candidates. Vaccine, 2002, 21, 155-157.	3.8	14
118	Immunization of Macaques with Formalin-Inactivated Respiratory Syncytial Virus (RSV) Induces Interleukin-13-Associated Hypersensitivity to Subsequent RSV Infection. Journal of Virology, 2002, 76, 11561-11569.	3.4	113
119	Retrospective Identification of Three Undiagnosed Cases of Measles Encephalitis. European Journal of Clinical Microbiology and Infectious Diseases, 2002, 21, 900-901.	2.9	1
120	Measles in suburban Khartoum: an epidemiological and clinical study. Tropical Medicine and International Health, 2002, 7, 442-449.	2.3	20
121	Genetic characterization of wild-type measles viruses circulating in suburban Khartoum, 1997–2000. Journal of General Virology, 2002, 83, 1437-1443.	2.9	47
122	Prevention of measles in Sudan: a prospective study on vaccination, diagnosis and epidemiology. Vaccine, 2001, 19, 2254-2257.	3.8	7
123	Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques. Vaccine, 2001, 19, 3700-3709.	3.8	161
124	Genetic analysis of Asian measles virus strains – new endemic genotype in Nepal. Virus Research, 2001, 76, 71-78.	2.2	37
125	Combination of Reverse Transcriptase PCR Analysis and Immunoglobulin M Detection on Filter Paper Blood Samples Allows Diagnostic and Epidemiological Studies of Measles. Journal of Clinical Microbiology, 2001, 39, 270-273.	3.9	64
126	Safety and Immunogenicity of a Novel Recombinant Subunit Respiratory Syncytial Virus Vaccine (BBG2Na) in Healthy Young Adults. Journal of Infectious Diseases, 2001, 184, 1456-1460.	4.0	111

#	Article	IF	CITATIONS
127	Type 1-like immune response is found in children with respiratory syncytial virus infection regardless of clinical severity. Journal of Medical Virology, 2000, 62, 267-277.	5.0	103
128	Evaluation of different measles IgG assays based on recombinant proteins using a panel of low-titre sera. Journal of Virological Methods, 2000, 84, 191-200.	2.1	15
129	Protective Immunity in Macaques Vaccinated with a Modified Vaccinia Virus Ankara-Based Measles Virus Vaccine in the Presence of Passively Acquired Antibodies. Journal of Virology, 2000, 74, 4236-4243.	3.4	106
130	HLA Class I-Restricted Cytotoxic T-Cell Epitopes of the Respiratory Syncytial Virus Fusion Protein. Journal of Virology, 2000, 74, 10240-10244.	3.4	41
131	Measles in a Dutch hospital introduced by an immunocompromised infant from Indonesia infected with a new virus genotype. Lancet, The, 2000, 355, 201-202.	13.7	64
132	Serological and Virological Characterization of Clinically Diagnosed Cases of Measles in Suburban Khartoum. Journal of Clinical Microbiology, 2000, 38, 987-991.	3.9	36
133	Measles virus fusion protein- and hemagglutinin-transfected cell lines are a sensitive tool for the detection of specific antibodies by a FACS-measured immunofluorescence assay. Journal of Virological Methods, 1998, 71, 35-44.	2.1	35
134	Major immunogenic proteins of phocid herpesviruses and their relationships to proteins of canine and feline herpesviruses. Veterinary Quarterly, 1998, 20, 50-55.	6.7	12
135	Ageâ€related disease in recurrent outbreaks of phocid herpesvirus typeâ€l infections in a seal rehabilitation centre: evaluation of diagnostic methods. Veterinary Record, 1997, 140, 500-503.	0.3	20
136	Impaired cellular immune response in rats exposed perinatally to Baltic Sea herring oil or 2,3,7,8-TCDD. Archives of Toxicology, 1997, 71, 563-574.	4.2	54
137	Impaired Immunity in Harbour Seals (Phoca vitulina) Exposed to Bioaccumulated Environmental Contaminants: Review of a Long-Term Feeding Study. Environmental Health Perspectives, 1996, 104, 823.	6.0	58
138	Suppression of natural killer cell activity in harbour seals (Phoca vitulina) fed Baltic Sea herring. Aquatic Toxicology, 1996, 34, 71-84.	4.0	128
139	The immunotoxicity of environmental contaminants to marine wildlife: A review. Annual Review of Fish Diseases, 1996, 6, 151-165.	1.0	62
140	Host resistance to rat cytomegalovirus (RCMV) and immune function in adult PVG rats fed herring from the contaminated Baltic Sea. Archives of Toxicology, 1996, 70, 661-671.	4.2	44
141	Contaminant-induced immunotoxicity in harbour seals: Wildlife at risk?. Toxicology, 1996, 112, 157-169.	4.2	275
142	The immunotoxicity of environmental contaminants to marine wildlife: a review. Annual Review of Fish Diseases, 1996, 6, 151-165.	1.0	0
143	Contaminant-related suppression of delayed-type hypersensitivity and antibody responses in harbor seals fed herring from the Baltic Sea Environmental Health Perspectives, 1995, 103, 162-167.	6.0	256
144	Short term fasting does not aggravate immunosuppression in harbour seals (Phoca vitulina) with high body burdens of organochlorines. Chemosphere, 1995, 31, 4289-4306.	8.2	48

#	Article	IF	CITATIONS
145	Haematology and clinical chemistry values for harbour seals (Phoca vitulina) fed environmentally contaminated herring remain within normal ranges. Canadian Journal of Zoology, 1995, 73, 2035-2043.	1.0	38
146	Morbillivirus infections of aquatic mammals: newly identified members of the genus. Veterinary Microbiology, 1995, 44, 219-227.	1.9	70
147	Relative immunocompetence of the newborn harbour seal, Phoca vitulina. Veterinary Immunology and Immunopathology, 1994, 42, 331-348.	1.2	70
148	First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs. Journal of Virology, 1994, 68, 4506-4513.	3.4	131
149	Dolphin morbillivirus infection in different parts of the Mediterranean Sea. Archives of Virology, 1993, 129, 235-242.	2.1	56
150	Mitogen and antigen induced B and T cell responses of peripheral blood mononuclear cells from the harbour seal (Phoca vitulina). Veterinary Immunology and Immunopathology, 1993, 37, 217-230.	1.2	71
151	Morbillivirus threat to Mediterranean monk seals?. Veterinary Record, 1992, 130, 141-142.	0.3	31
152	Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. Nature, 1988, 334, 173-175.	27.8	270