Maria Pina Concas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8903492/publications.pdf

Version: 2024-02-01

56 papers

5,506 citations

236925 25 h-index 55 g-index

63 all docs

63
docs citations

63 times ranked

10876 citing authors

#	Article	IF	CITATIONS
1	Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 2016, 533, 539-542.	27.8	1,204
2	A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nature Genetics, 2019, 51, 957-972.	21.4	549
3	Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nature Genetics, 2019, 51, 245-257.	21.4	536
4	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	27.8	353
5	Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders. American Journal of Human Genetics, 2018, 103, 691-706.	6.2	326
6	Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nature Genetics, 2016, 48, 1462-1472.	21.4	284
7	Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nature Genetics, 2019, 51, 1459-1474.	21.4	251
8	Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nature Genetics, 2018, 50, 834-848.	21.4	239
9	Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 2022, 54, 437-449.	21.4	215
10	Directional dominance on stature and cognition inÂdiverse human populations. Nature, 2015, 523, 459-462.	27.8	173
11	Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity. Nature Communications, 2017, 8, 910.	12.8	118
12	Multi-ancestry genome-wide gene–smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids. Nature Genetics, 2019, 51, 636-648.	21.4	112
13	Genetic variants linked to education predict longevity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13366-13371.	7.1	110
14	Height-reducing variants and selection for short stature in Sardinia. Nature Genetics, 2015, 47, 1352-1356.	21.4	96
15	Genome-wide association meta-analysis of individuals of European ancestry identifies new loci explaining a substantial fraction of hair color variation and heritability. Nature Genetics, 2018, 50, 652-656.	21.4	86
16	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	12.8	84
17	Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications, 2019, 10, 376.	12.8	64
18	Identification of 371 genetic variants for age at first sex and birth linked to externalising behaviour. Nature Human Behaviour, 2021, 5, 1717-1730.	12.0	62

#	Article	IF	CITATIONS
19	Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction. Nature Communications, 2020, 11 , 2542.	12.8	59
20	Six Novel Loci Associated with Circulating VEGF Levels Identified by a Meta-analysis of Genome-Wide Association Studies. PLoS Genetics, 2016, 12, e1005874.	3.5	56
21	Genome-wide association analysis on normal hearing function identifies <i>PCDH20</i> and <i>SLC28A3</i> as candidates for hearing function and loss. Human Molecular Genetics, 2015, 24, 5655-5664.	2.9	37
22	Genome-wide association study in almost $195,000$ individuals identifies 50 previously unidentified genetic loci for eye color. Science Advances, $2021,7,.$	10.3	36
23	Environmental and Genetic Contribution to Hypertension Prevalence: Data from an Epidemiological Survey on Sardinian Genetic Isolates. PLoS ONE, 2013, 8, e59612.	2.5	36
24	Salt-inducible kinase 3, SIK3, is a new gene associated with hearing. Human Molecular Genetics, 2014, 23, 6407-6418.	2.9	30
25	A bird's-eye view of Italian genomic variation through whole-genome sequencing. European Journal of Human Genetics, 2020, 28, 435-444.	2.8	29
26	Effects of Calcium, Magnesium, and Potassium Concentrations on Ventricular Repolarization in Unselected Individuals. Journal of the American College of Cardiology, 2019, 73, 3118-3131.	2.8	27
27	Genome-wide association meta-analysis identifies 48 risk variants and highlights the role of the stria vascularis in hearing loss. American Journal of Human Genetics, 2022, 109, 1077-1091.	6.2	27
28	Hypertension in High School Students: Genetic and Environmental Factors. Hypertension, 2020, 75, 71-78.	2.7	25
29	NFAT5 and SLC4A10 Loci Associate with Plasma Osmolality. Journal of the American Society of Nephrology: JASN, 2017, 28, 2311-2321.	6.1	24
30	Whole-genome sequencing reveals new insights into age-related hearing loss: cumulative effects, pleiotropy and the role of selection. European Journal of Human Genetics, 2018, 26, 1167-1179.	2.8	22
31	Large-scale GWAS of food liking reveals genetic determinants and genetic correlations with distinct neurophysiological traits. Nature Communications, 2022, 13, 2743.	12.8	22
32	A Brief Review of Genetic Approaches to the Study of Food Preferences: Current Knowledge and Future Directions. Nutrients, 2019, 11, 1735.	4.1	20
33	Differences in taste and smell perception between type 2 diabetes mellitus patients and healthy controls. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 193-200.	2.6	19
34	Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals. Communications Biology, 2022, 5, .	4.4	17
35	Combined influence of TAS2R38 genotype and PROP phenotype on the intensity of basic tastes, astringency and pungency in the Italian taste project. Food Quality and Preference, 2022, 95, 104361.	4.6	15
36	Meta-GWAS Reveals Novel Genetic Variants Associated with Urinary Excretion of Uromodulin. Journal of the American Society of Nephrology: JASN, 2022, 33, 511-529.	6.1	14

#	Article	IF	CITATIONS
37	Using genetic variation to disentangle the complex relationship between food intake and health outcomes. PLoS Genetics, 2022, 18, e1010162.	3.5	12
38	A common variant in <i><scp>RAB</scp>27A</i> gene is associated with fractional exhaled nitric oxide levels in adults. Clinical and Experimental Allergy, 2015, 45, 797-806.	2.9	11
39	Application of a New Method for GWAS in a Related Case/Control Sample with Known Pedigree Structure: Identification of New Loci for Nephrolithiasis. PLoS Genetics, 2011, 7, e1001281.	3.5	10
40	A genome-wide association study of corneal astigmatism: The CREAM Consortium. Molecular Vision, 2018, 24, 127-142.	1.1	10
41	Factors associated with food liking and their relationship with metabolic traits in Italian cohorts. Food Quality and Preference, 2019, 75, 64-70.	4.6	9
42	Microsatellites and SNPs linkage analysis in a Sardinian genetic isolate confirms several essential hypertension loci previously identified in different populations. BMC Medical Genetics, 2009, 10, 81.	2.1	8
43	History, geography and population structure influence the distribution and heritability of blood and anthropometric quantitative traits in nine Sardinian genetic isolates. Genetical Research, 2010, 92, 199-208.	0.9	8
44	Probing the factor structure of metabolic syndrome in Sardinian genetic isolates. Nutrition, Metabolism and Cardiovascular Diseases, 2015, 25, 548-555.	2.6	7
45	Dissecting metabolic syndrome components: data from an epidemiologic survey in a genetic isolate. SpringerPlus, 2015, 4, 324.	1.2	6
46	Investigation of the link between PROP taste perception and vegetables consumption using FAOSTAT data. International Journal of Food Sciences and Nutrition, 2019, 70, 484-490.	2.8	6
47	Estimation of metabolic syndrome heritability in three large populations including full pedigree and genomic information. Human Genetics, 2019, 138, 739-748.	3.8	4
48	The Role of Knockout Olfactory Receptor Genes in Odor Discrimination. Genes, 2021, 12, 631.	2.4	3
49	Non-Syndromic Autosomal Dominant Hearing Loss: The First Italian Family Carrying a Mutation in the NCOA3 Gene. Genes, 2021, 12, 1043.	2.4	3
50	Genetics, odor perception and food liking: The intriguing role of cinnamon. Food Quality and Preference, 2021, 93, 104277.	4.6	2
51	Sensory Capacities and Eating Behavior: Intriguing Results from a Large Cohort of Italian Individuals. Foods, 2022, 11, 735.	4.3	2
52	Genetic Dissection of Temperament Personality Traits in Italian Isolates. Genes, 2022, 13, 4.	2.4	2
53	Hearing Function: Identification of New Candidate Genes Further Explaining the Complexity of This Sensory Ability. Genes, 2021, 12, 1228.	2.4	1
54	Eating disinhibition and food liking are influenced by variants in CAV1 (caveolin 1) gene. Food Quality and Preference, 2022, 96, 104447.	4.6	1

#	Article	IF	CITATIONS
55	Genetic variations associated with the soapy flavor perception in Gorgonzola PDO cheese. Food Quality and Preference, 2022, 99, 104569.	4.6	1
56	Genome-wide association studies on Northern Italy isolated populations provide further support concerning genetic susceptibility for major depressive disorder. World Journal of Biological Psychiatry, 2023, 24, 135-148.	2.6	1