
Harry J Gilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8903031/publications.pdf Version: 2024-02-01

HADDY | CHREDT

#	Article	IF	CITATIONS
1	Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochemical Journal, 2004, 382, 769-781.	3.7	1,720
2	Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts. PLoS Biology, 2011, 9, e1001221.	5.6	644
3	Cellulosomes: Highly Efficient Nanomachines Designed to Deconstruct Plant Cell Wall Complex Carbohydrates. Annual Review of Biochemistry, 2010, 79, 655-681.	11.1	498
4	Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature, 2017, 544, 65-70.	27.8	447
5	Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature, 2015, 517, 165-169.	27.8	427
6	Glycan complexity dictates microbial resource allocation in the large intestine. Nature Communications, 2015, 6, 7481.	12.8	328
7	The Biochemistry and Structural Biology of Plant Cell Wall Deconstruction. Plant Physiology, 2010, 153, 444-455.	4.8	290
8	Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Current Opinion in Structural Biology, 2013, 23, 669-677.	5.7	268
9	Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nature Microbiology, 2018, 3, 210-219.	13.3	263
10	Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochemical Journal, 1998, 331, 775-781.	3.7	261
11	Understanding the Biological Rationale for the Diversity of Cellulose-directed Carbohydrate-binding Modules in Prokaryotic Enzymes. Journal of Biological Chemistry, 2006, 281, 29321-29329.	3.4	221
12	Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15293-15298.	7.1	219
13	Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics, 2015, 31, 647-655.	4.1	195
14	PULDB: the expanded database of Polysaccharide Utilization Loci. Nucleic Acids Research, 2018, 46, D677-D683.	14.5	191
15	Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiology Reviews, 2018, 42, 146-164.	8.6	188
16	How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. Current Opinion in Plant Biology, 2008, 11, 338-348.	7.1	178
17	4- <i>O</i> -methylation of glucuronic acid in <i>Arabidopsis</i> glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14253-14258.	7.1	164
18	The X6 "Thermostabilizing―Domains of Xylanases Are Carbohydrate-Binding Modules:  Structure and Biochemistry of the Clostridium thermocellum X6b Domain,. Biochemistry, 2000, 39, 5013-5021.	2.5	154

HARRY J GILBERT

#	Article	IF	CITATIONS
19	Substrate Distortion by a -Mannanase: Snapshots of the Michaelis and Covalent-Intermediate Complexes Suggest a B2,5 Conformation for the Transition State. Angewandte Chemie - International Edition, 2002, 41, 2824-2827.	13.8	127
20	Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Molecular Microbiology, 2007, 63, 1568-1576.	2.5	124
21	The Structural Basis for the Ligand Specificity of Family 2 Carbohydrate-binding Modules. Journal of Biological Chemistry, 2000, 275, 41137-41142.	3.4	120
22	Mechanistic insights into a Ca2+-dependent family of α-mannosidases in a human gut symbiont. Nature Chemical Biology, 2010, 6, 125-132.	8.0	115
23	Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3065-3070.	7.1	109
24	Structural and biochemical evidence for a boat-like transition state in β-mannosidases. Nature Chemical Biology, 2008, 4, 306-312.	8.0	104
25	A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nature Microbiology, 2018, 3, 1314-1326.	13.3	103
26	The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases. Journal of Biological Chemistry, 2016, 291, 7439-7449.	3.4	102
27	The Topology of the Substrate Binding Clefts of Glycosyl Hydrolase Family 10 Xylanases Are Not Conserved. Journal of Biological Chemistry, 1998, 273, 32187-32199.	3.4	100
28	How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7037-7042.	7.1	99
29	How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20889-20894.	7.1	97
30	Promiscuity in ligand-binding: The three-dimensional structure of a Piromyces carbohydrate-binding module, CBM29-2, in complex with cello- and mannohexaose. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14077-14082.	7.1	89
31	Structure and Function of an Arabinoxylan-specific Xylanase. Journal of Biological Chemistry, 2011, 286, 22510-22520.	3.4	89
32	Structural and Biochemical Analysis of Cellvibrio japonicus Xylanase 10C. Journal of Biological Chemistry, 2004, 279, 11777-11788.	3.4	86
33	The Structure and Function of an Arabinan-specific α-1,2-Arabinofuranosidase Identified from Screening the Activities of Bacterial GH43 Glycoside Hydrolases. Journal of Biological Chemistry, 2011, 286, 15483-15495.	3.4	85
34	Crystal Structure of Mannanase 26A from Pseudomonas cellulosa and Analysis of Residues Involved in Substrate Binding. Journal of Biological Chemistry, 2001, 276, 31186-31192.	3.4	81
35	All three surface tryptophans in Type IIa cellulose binding domains play a pivotal role in binding both soluble and insoluble ligands. FEBS Letters, 1998, 429, 312-316.	2.8	77
36	The Structural Basis for Catalysis and Specificity of the Pseudomonas cellulosa α-Glucuronidase, GlcA67A. Structure, 2002, 10, 547-556.	3.3	74

HARRY J GILBERT

#	Article	IF	CITATIONS
37	Solution Structure of the CBM10 Cellulose Binding Module fromPseudomonasXylanase Aâ€,‡. Biochemistry, 2000, 39, 978-984.	2.5	73
38	Key Residues in Subsite F Play a Critical Role in the Activity of Pseudomonas fluorescens Subspecies cellulosa Xylanase A Against Xylooligosaccharides but Not Against Highly Polymeric Substrates such as Xylan. Journal of Biological Chemistry, 1997, 272, 2942-2951.	3.4	72
39	Mannanase A fromPseudomonas fluorescensssp.cellulosaIs a Retaining Glycosyl Hydrolase in Which E212 and E320 Are the Putative Catalytic Residuesâ€. Biochemistry, 1996, 35, 16195-16204.	2.5	70
40	The Structure of a Streptomyces avermitilis α-l-Rhamnosidase Reveals a Novel Carbohydrate-binding Module CBM67 within the Six-domain Arrangement. Journal of Biological Chemistry, 2013, 288, 12376-12385.	3.4	67
41	A Bacteroidetes locus dedicated to fungal 1,6-β-glucan degradation: Unique substrate conformation drives specificity of the key endo-1,6-β-glucanase. Journal of Biological Chemistry, 2017, 292, 10639-10650.	3.4	65
42	Evidence That GH115 α-Glucuronidase Activity, Which Is Required to Degrade Plant Biomass, Is Dependent on Conformational Flexibility. Journal of Biological Chemistry, 2014, 289, 53-64.	3.4	63
43	Complexity of the <i>Ruminococcus flavefaciens</i> cellulosome reflects an expansion in glycan recognition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7136-7141.	7.1	58
44	Role of Hydrogen Bonding in the Interaction between a Xylan Binding Module and Xylan. Biochemistry, 2001, 40, 5700-5707.	2.5	57
45	The Active Site of a Carbohydrate Esterase Displays Divergent Catalytic and Noncatalytic Binding Functions. PLoS Biology, 2009, 7, e1000071.	5.6	56
46	Importance of Hydrophobic and Polar Residues in Ligand Binding in the Family 15 Carbohydrate-Binding Module fromCellvibrio japonicusXyn10C. Biochemistry, 2003, 42, 9316-9323.	2.5	55
47	Systems biology defines the biological significance of redoxâ€active proteins during cellulose degradation in an aerobic bacterium. Molecular Microbiology, 2014, 94, 1121-1133.	2.5	51
48	Understanding How the Complex Molecular Architecture of Mannan-degrading Hydrolases Contributes to Plant Cell Wall Degradation. Journal of Biological Chemistry, 2014, 289, 2002-2012.	3.4	47
49	Recognition of xyloglucan by the crystalline celluloseâ€binding site of a family 3a carbohydrateâ€binding module. FEBS Letters, 2015, 589, 2297-2303.	2.8	46
50	A β-Mannanase with a Lysozyme-like Fold and a Novel Molecular Catalytic Mechanism. ACS Central Science, 2016, 2, 896-903.	11.3	39
51	Unusual active site location and catalytic apparatus in a glycoside hydrolase family. Proceedings of the United States of America, 2017, 114, 4936-4941.	7.1	38
52	Family 46 Carbohydrate-binding Modules Contribute to the Enzymatic Hydrolysis of Xyloglucan and β-1,3–1,4-Glucans through Distinct Mechanisms. Journal of Biological Chemistry, 2015, 290, 10572-10586.	3.4	36
53	Coevolution of yeast mannan digestion: Convergence of the civilized human diet, distal gut microbiome, and host immunity. Gut Microbes, 2015, 6, 334-339.	9.8	36
54	Influence of the Aglycone Region of the Substrate Binding Cleft ofPseudomonasXylanase 10A on Catalysis. Biochemistry, 2001, 40, 7404-7409.	2.5	33

4

HARRY J GILBERT

#	Article	IF	CITATIONS
55	The GH130 Family of Mannoside Phosphorylases Contains Glycoside Hydrolases That Target β-1,2-Mannosidic Linkages in Candida Mannan. Journal of Biological Chemistry, 2015, 290, 25023-25033.	3.4	32
56	Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions. Scientific Reports, 2017, 7, 42355.	3.3	31
57	An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins. Journal of Biological Chemistry, 2017, 292, 13271-13283.	3.4	26
58	Cell-surface Attachment of Bacterial Multienzyme Complexes Involves Highly Dynamic Protein-Protein Anchors. Journal of Biological Chemistry, 2015, 290, 13578-13590.	3.4	22
59	Diverse specificity of cellulosome attachment to the bacterial cell surface. Scientific Reports, 2016, 6, 38292.	3.3	20
60	Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes. Scientific Reports, 2017, 7, 759.	3.3	20
61	Single Binding Mode Integration of Hemicellulose-degrading Enzymes via Adaptor Scaffoldins in Ruminococcus flavefaciens Cellulosome. Journal of Biological Chemistry, 2016, 291, 26658-26669.	3.4	19
62	A Novel Carbohydrate-binding Module from Sugar Cane Soil Metagenome Featuring Unique Structural and Carbohydrate Affinity Properties. Journal of Biological Chemistry, 2016, 291, 23734-23743.	3.4	18
63	Structure–function analyses generate novel specificities to assemble the components of multienzyme bacterial cellulosome complexes. Journal of Biological Chemistry, 2018, 293, 4201-4212.	3.4	12
64	Carbohydrate-binding module assisting glycosynthase-catalysed polymerizations. Biochemical Journal, 2015, 470, 15-22.	3.7	11
65	Target highlights from the first postâ€PSI CASP experiment (CASP12, May–August 2016). Proteins: Structure, Function and Bioinformatics, 2018, 86, 27-50.	2.6	11
66	Structure of the GH76 α-mannanase homolog, BT2949, from the gut symbiont <i>Bacteroides thetaiotaomicron</i> . Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 408-415.	2.5	8
67	Sulfation of Arabinogalactan Proteins Confers Privileged Nutrient Status to Bacteroides plebeius. MBio, 2021, 12, e0136821.	4.1	7
68	Higher order scaffoldin assembly in Ruminococcus flavefaciens cellulosome is coordinated by a discrete cohesin-dockerin interaction. Scientific Reports, 2018, 8, 6987.	3.3	6
69	Cloning, purification, crystallization and preliminary X-ray studies of a carbohydrate-binding module (CBM_E1) derived from sugarcane soil metagenome. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1232-1235.	0.8	2
70	Editorial overview: Carbohydrate–protein interactions and glycosylation: integrating structural biology, informatics and systems modelling to understand glycan structure and glycan-protein interactions. Current Opinion in Structural Biology, 2016, 40, v-viii.	5.7	1
71	Innenrücktitelbild: The Reaction Coordinate of a Bacterial GH47 α-Mannosidase: A Combined Quantum Mechanical and Structural Approach (Angew. Chem. 44/2012). Angewandte Chemie, 2012, 124, 11333-11333.	2.0	0
72	Editorial overview: Carbohydrate–protein interactions: The future is taking shape. Current Opinion in Structural Biology, 2014, 28, v-vii.	5.7	0