Dietmar Zaiss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8902788/publications.pdf Version: 2024-02-01

DIFTMAD ZAISS

#	Article	IF	CITATIONS
1	Emerging Role of EGFR Mutations in Creating an Immune Suppressive Tumour Microenvironment. Biomedicines, 2022, 10, 52.	3.2	4
2	lsotype selection for antibody-based cancer therapy. Clinical and Experimental Immunology, 2021, 203, 351-365.	2.6	10
3	Amphiregulin as a driver of tissue fibrosis. American Journal of Transplantation, 2020, 20, 631-632.	4.7	8
4	Local proliferation of monocytes. Journal of Leukocyte Biology, 2020, 107, 547-549.	3.3	3
5	Nemo-like Kinase Drives Foxp3 Stability and Is Critical for Maintenance of Immune Tolerance by Regulatory T Cells. Cell Reports, 2019, 26, 3600-3612.e6.	6.4	35
6	Immune―and nonâ€immuneâ€mediated roles of regulatory Tâ€cells during wound healing. Immunology, 2019, 157, 190-197.	4.4	51
7	A Macrophage-Pericyte Axis Directs Tissue Restoration via Amphiregulin-Induced Transforming Growth Factor Beta Activation. Immunity, 2019, 50, 645-654.e6.	14.3	141
8	Amphiregulin-producing γδT cells are vital for safeguarding oral barrier immune homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10738-10743.	7.1	73
9	Loss of amphiregulin reduces myoepithelial cell coverage of mammary ducts and alters breast tumor growth. Breast Cancer Research, 2018, 20, 131.	5.0	11
10	Forkhead box transcription factors as context-dependent regulators of lymphocyte homeostasis. Nature Reviews Immunology, 2018, 18, 703-715.	22.7	18
11	Local amplifiers of IL-4Rα–mediated macrophage activation promote repair in lung and liver. Science, 2017, 356, 1076-1080.	12.6	163
12	Epidermal Growth Factor Receptor Expression Licenses Type-2 Helper T Cells to Function in a T Cell Receptor-Independent Fashion. Immunity, 2017, 47, 710-722.e6.	14.3	82
13	Tissue-specific contribution of macrophages to wound healing. Seminars in Cell and Developmental Biology, 2017, 61, 3-11.	5.0	342
14	Dissecting antigen processing and presentation routes in dermal vaccination strategies. Vaccine, 2017, 35, 7057-7063.	3.8	2
15	The Immune System's Contribution to the Clinical Efficacy of EGFR Antagonist Treatment. Frontiers in Pharmacology, 2017, 8, 575.	3.5	30
16	Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. Journal of Clinical Investigation, 2017, 127, 1813-1825.	8.2	84
17	Emerging Functions of Amphiregulin in Orchestrating Immunity, Inflammation, and Tissue Repair. Immunity, 2015, 42, 216-226.	14.3	429
18	IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin–EGFR interactions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10762-10767.	7.1	407

DIETMAR ZAISS

#	Article	IF	CITATIONS
19	Basophil-Derived Amphiregulin Is Essential for UVB Irradiation–Induced Immune Suppression. Journal of Investigative Dermatology, 2015, 135, 222-228.	0.7	41
20	Allergen-Specific Cytokine Polarization Protects Shetland Ponies against Culicoides obsoletus-Induced Insect Bite Hypersensitivity. PLoS ONE, 2015, 10, e0122090.	2.5	13
21	Enhanced Inflammatory Potential of CD4+ T-Cells That Lack Proteasome Immunosubunit Expression, in a T-Cell Transfer-Based Colitis Model. PLoS ONE, 2014, 9, e95378.	2.5	3
22	Stabilization of the Transcription Factor Foxp3 by the Deubiquitinase USP7 Increases Treg-Cell-Suppressive Capacity. Immunity, 2013, 39, 259-271.	14.3	248
23	Canonical Wnt Signaling Negatively Modulates Regulatory T Cell Function. Immunity, 2013, 39, 298-310.	14.3	183
24	Seasonal differences in cytokine expression in the skin of Shetland ponies suffering from insect bite hypersensitivity. Veterinary Immunology and Immunopathology, 2013, 151, 147-156.	1.2	14
25	Amphiregulin Enhances Regulatory T Cell-Suppressive Function via the Epidermal Growth Factor Receptor. Immunity, 2013, 38, 275-284.	14.3	324
26	Pre-existing virus-specific CD8+ T-cells provide protection against pneumovirus-induced disease in mice. Vaccine, 2012, 30, 6382-6388.	3.8	12
27	The Bone Marrow Functions as the Central Site of Proliferation for Long-Lived NK Cells. Journal of Immunology, 2012, 189, 2333-2337.	0.8	39
28	CCR2 Defines a Distinct Population of NK Cells and Mediates Their Migration during Influenza Virus Infection in Mice. PLoS ONE, 2012, 7, e52027.	2.5	52
29	Immunoproteasome-Deficiency Has No Effects on NK Cell Education, but Confers Lymphocytes into Targets for NK Cells in Infected Wild-Type Mice. PLoS ONE, 2011, 6, e23769.	2.5	6
30	PA28 and the proteasome immunosubunits play a central and independent role in the production of MHC class lâ€binding peptides in vivo. European Journal of Immunology, 2011, 41, 926-935.	2.9	52
31	Proteasome Immunosubunits Protect against the Development of CD8 T Cell-Mediated Autoimmune Diseases. Journal of Immunology, 2011, 187, 2302-2309.	0.8	42
32	Contribution of Classic and Alternative Effector Pathways in Peanut-Induced Anaphylactic Responses. PLoS ONE, 2011, 6, e28917.	2.5	52
33	Considerations in the design of vaccines that induce CD8 T cell mediated immunity. Vaccine, 2010, 28, 7716-7722.	3.8	10
34	Automated analysis of two- and three-color fluorescent Elispot (Fluorospot) assays for cytokine secretion. Computer Methods and Programs in Biomedicine, 2008, 92, 54-65.	4.7	27
35	Enumeration of Cytotoxic CD8 T Cells Ex Vivo during the Response to <i>Listeria monocytogenes</i> Infection. Infection and Immunity, 2008, 76, 4609-4614.	2.2	11
36	The Proteasome Immunosubunit Multicatalytic Endopeptidase Complex-Like 1 Is a T-Cell-Intrinsic Factor Influencing Homeostatic Expansion. Infection and Immunity, 2008, 76, 1207-1213.	2.2	44

DIETMAR ZAISS

#	Article	IF	CITATIONS
37	Rates of Processing Determine the Immunogenicity of Immunoproteasome-Generated Epitopes. Journal of Immunology, 2007, 178, 7557-7562.	0.8	63
38	Early Intrahepatic Accumulation of CD8+ T Cells Provides a Source of Effectors for Nonhepatic Immune Responses. Journal of Immunology, 2007, 179, 201-210.	0.8	34
39	Amphiregulin, a T _H 2 Cytokine Enhancing Resistance to Nematodes. Science, 2006, 314, 1746-1746.	12.6	180
40	Protein Vaccines Induce Uncommitted IL-2-Secreting Human and Mouse CD4 T Cells, Whereas Infections Induce More IFN-Î ³ -Secreting Cells. Journal of Immunology, 2006, 176, 1465-1473.	0.8	58
41	Expression of selectin ligands on murine effector and IL-10-producing CD4+T cells from non-infected and infected tissues. European Journal of Immunology, 2004, 34, 3070-3081.	2.9	28
42	PI31 is a modulator of proteasome formation and antigen processing. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14344-14349.	7.1	104
43	Autoantibodies to GPI and creatine kinase in RA. Nature Immunology, 2002, 3, 411-411.	14.5	53
44	The Role of the Ubiquitin-proteasome Pathway in MHC Class I Antigen Processing: Implications for Vaccine Design. Current Molecular Medicine, 2001, 1, 665-676.	1.3	41
45	The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Letters, 1999, 457, 333-338.	2.8	89
46	A second gene encoding the mouse proteasome activator PA28β subunit is part of a LINE1 element and is driven by a LINE1 promoter. Journal of Molecular Biology, 1999, 287, 829-835.	4.2	23
47	Molecular cloning of the Drosophila melanogaster gene α5_dm encoding a 20S proteasome α-type subunit Gene 1997 201 99-105	2.2	13