Tamar Harel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8902286/publications.pdf

Version: 2024-02-01

206112 331670 2,621 51 21 48 citations h-index g-index papers 52 52 52 6279 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Infantile SOD1 deficiency syndrome caused by a homozygous <i>SOD1</i> variant with absence of enzyme activity. Brain, 2022, 145, 872-878.	7.6	10
2	RECON syndrome is a genome instability disorder caused by mutations in the DNA helicase RECQL1. Journal of Clinical Investigation, 2022, 132 , .	8.2	21
3	CRISPR/Cas9-induced gene conversion between ATAD3 paralogs. Human Genetics and Genomics Advances, 2022, 3, 100092.	1.7	1
4	Bi-allelic variants in neuronal cell adhesion molecule cause a neurodevelopmental disorder characterized by developmental delay, hypotonia, neuropathy/spasticity. American Journal of Human Genetics, 2022, 109, 518-532.	6.2	8
5	De novo variants in <i>EMC1</i> lead to neurodevelopmental delay and cerebellar degeneration and affect glial function in <i>Drosophila</i> Human Molecular Genetics, 2022, 31, 3231-3244.	2.9	5
6	Orbital nodular fasciitis in child with biallelic germline RBL2 variant. European Journal of Medical Genetics, 2022, 65, 104513.	1.3	0
7	<i>De novo</i> heterozygous variants in <scp><i>SLC30A7</i></scp> are a candidate cause for Joubert syndrome. American Journal of Medical Genetics, Part A, 2022, 188, 2360-2366.	1.2	3
8	De novo variants in <i>SIAH1,</i> encoding an E3 ubiquitin ligase, are associated with developmental delay, hypotonia and dysmorphic features. Journal of Medical Genetics, 2021, 58, 205-212.	3.2	6
9	De novo variant in AMOTL1 in infant with cleft lip and palate, imperforate anus and dysmorphic features. American Journal of Medical Genetics, Part A, 2021, 185, 190-195.	1.2	3
10	Parental exome analysis identifies shared carrier status for a second recessive disorder in couples with an affected child. European Journal of Human Genetics, 2021, 29, 455-462.	2.8	8
11	Homozygous variant in MADD, encoding a Rab guanine nucleotide exchange factor, results in pleiotropic effects and a multisystemic disorder. European Journal of Human Genetics, 2021, 29, 977-987.	2.8	6
12	Functional interpretation of ATAD3A variants in neuro-mitochondrial phenotypes. Genome Medicine, 2021, 13, 55.	8.2	16
13	Biallelic deletion in a minimal <scp><i>CAPN15</i></scp> intron in siblings with a recognizable syndrome of congenital malformations and developmental delay. Clinical Genetics, 2021, 99, 577-582.	2.0	9
14	Levodopa-responsive dystonia caused by biallelic <i>PRKN</i> exon inversion invisible to exome sequencing. Brain Communications, 2021, 3, fcab197.	3.3	5
15	Response to Hall etÂal American Journal of Human Genetics, 2020, 107, 1188-1189.	6.2	O
16	Mutations in MYLPF Cause a Novel Segmental Amyoplasia that Manifests as Distal Arthrogryposis. American Journal of Human Genetics, 2020, 107, 293-310.	6.2	21
17	NEMF mutations that impair ribosome-associated quality control are associated with neuromuscular disease. Nature Communications, 2020, 11, 4625.	12.8	47
18	Wholeâ€genome sequencing reveals complex chromosome rearrangement disrupting <scp><i>NIPBL</i></scp> in infant with Cornelia de Lange syndrome. American Journal of Medical Genetics, Part A, 2020, 182, 1143-1151.	1.2	17

#	Article	IF	Citations
19	Grandparental genotyping enhances exome variant interpretation. American Journal of Medical Genetics, Part A, 2020, 182, 689-696.	1.2	4
20	Recurrent De Novo NAHR Reciprocal Duplications in the ATAD3 Gene Cluster Cause a Neurogenetic Trait with Perturbed Cholesterol and Mitochondrial Metabolism. American Journal of Human Genetics, 2020, 106, 272-279.	6.2	33
21	Loss of function mutations in CCDC32 cause a congenital syndrome characterized by craniofacial, cardiac and neurodevelopmental anomalies. Human Molecular Genetics, 2020, 29, 1489-1497.	2.9	6
22	Fetal exome sequencing: yield and limitations in a tertiary referral center. Ultrasound in Obstetrics and Gynecology, 2019, 53, 80-86.	1.7	44
23	Homozygous frameshift variant in NTNG2, encoding a synaptic cell adhesion molecule, in individuals with developmental delay, hypotonia, and autistic features. Neurogenetics, 2019, 20, 209-213.	1.4	7
24	Homozygous variants in <i>MAPRE2</i> and <i>CDON</i> in individual with skin folds, growth delay, retinal coloboma, and pyloric stenosis. American Journal of Medical Genetics, Part A, 2019, 179, 2454-2458.	1.2	9
25	Pathogenic Variants in NUP214 Cause "Plugged―Nuclear Pore Channels and Acute Febrile Encephalopathy. American Journal of Human Genetics, 2019, 105, 48-64.	6.2	29
26	Homozygous stop-gain variant in LRRC32, encoding a TGF \hat{I}^2 receptor, associated with cleft palate, proliferative retinopathy, and developmental delay. European Journal of Human Genetics, 2019, 27, 1315-1319.	2.8	7
27	Biallelic variants in AGTPBP1, involved in tubulin deglutamylation, are associated with cerebellar degeneration and motor neuropathy. European Journal of Human Genetics, 2019, 27, 1419-1426.	2.8	25
28	Insights into genetics, human biology and disease gleaned from family based genomic studies. Genetics in Medicine, 2019, 21, 798-812.	2.4	161
29	MARS variant associated with both recessive interstitial lung and liver disease and dominant Charcot-Marie-Tooth disease. European Journal of Medical Genetics, 2018, 61, 616-620.	1.3	14
30	Phenotypic expansion illuminates multilocus pathogenic variation. Genetics in Medicine, 2018, 20, 1528-1537.	2.4	104
31	Comprehensive genomic analysis of patients with disorders of cerebral cortical development. European Journal of Human Genetics, 2018, 26, 1121-1131.	2.8	35
32	Genomic disorders 20 years onâ€"mechanisms for clinical manifestations. Clinical Genetics, 2018, 93, 439-449.	2.0	102
33	Identification of a pathogenic PMP2 variant in a multi-generational family with CMT type 1: Clinical gene panels versus genome-wide approaches to molecular diagnosis. Molecular Genetics and Metabolism, 2018, 125, 302-304.	1.1	13
34	Homozygous mutation in MFSD2A, encoding a lysolipid transporter for docosahexanoic acid, is associated with microcephaly and hypomyelination. Neurogenetics, 2018, 19, 227-235.	1.4	45
35	22q11.2q13 duplication including <i>SOX10</i> causes sexâ€reversal and peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease. American Journal of Medical Genetics, Part A, 2017, 173, 1066-1070.	1.2	23
36	Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Medicine, 2017, 9, 26.	8.2	184

#	Article	IF	Citations
37	Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation. New England Journal of Medicine, 2017, 376, 21-31.	27.0	565
38	De Novo Missense Mutations in DHX30 Impair Global Translation and Cause a Neurodevelopmental Disorder. American Journal of Human Genetics, 2017, 101, 716-724.	6.2	66
39	Homozygous null variant in <i>CRADD</i> , encoding an adaptor protein that mediates apoptosis, is associated with lissencephaly. American Journal of Medical Genetics, Part A, 2017, 173, 2539-2544.	1.2	18
40	Clinically severe CACNA1A alleles affect synaptic function and neurodegeneration differentially. PLoS Genetics, 2017, 13, e1006905.	3.5	80
41	Nonrecurrent PMP22-RAI1 contiguous gene deletions arise from replication-based mechanisms and result in Smith–Magenis syndrome with evident peripheral neuropathy. Human Genetics, 2016, 135, 1161-1174.	3.8	4
42	Bi-allelic Mutations in PKD1L1 Are Associated with Laterality Defects in Humans. American Journal of Human Genetics, 2016, 99, 886-893.	6.2	57
43	Recurrent De Novo and Biallelic Variation of ATAD3A, Encoding a Mitochondrial Membrane Protein, Results in Distinct Neurological Syndromes. American Journal of Human Genetics, 2016, 99, 831-845.	6.2	146
44	Identification of a RAI1-associated disease network through integration of exome sequencing, transcriptomics, and 3D genomics. Genome Medicine, 2016, 8, 105.	8.2	20
45	Monoallelic and Biallelic Variants in EMC1 Identified in Individuals with Global Developmental Delay, Hypotonia, Scoliosis, and Cerebellar Atrophy. American Journal of Human Genetics, 2016, 98, 562-570.	6.2	66
46	The role of combined SNV and CNV burden in patients with distal symmetric polyneuropathy. Genetics in Medicine, 2016, 18, 443-451.	2.4	18
47	Atypical presentation of moyamoya disease in an infant with a de novo <i>RNF213</i> variant. American Journal of Medical Genetics, Part A, 2015, 167, 2742-2747.	1.2	15
48	Exome Sequence Analysis Suggests that Genetic Burden Contributes to Phenotypic Variability and Complex Neuropathy. Cell Reports, 2015, 12, 1169-1183.	6.4	211
49	Genes that Affect Brain Structure and Function Identified by Rare Variant Analyses of Mendelian Neurologic Disease. Neuron, 2015, 88, 499-513.	8.1	258
50	Nonrecurrent 17p11.2p12 Rearrangement Events that Result in Two Concomitant Genomic Disorders: The PMP22-RAI1 Contiguous Gene Duplication Syndrome. American Journal of Human Genetics, 2015, 97, 691-707.	6.2	33
51	Charcot–Marie–Tooth disease and pathways to molecular based therapies. Clinical Genetics, 2014, 86, 422-431.	2.0	28