Kay M Brummond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8902273/publications.pdf

Version: 2024-02-01

126907 144013 3,350 65 33 57 citations h-index g-index papers 75 75 75 2719 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent Advances in the Pauson–Khand Reaction and Related [2+2+1] Cycloadditions. Tetrahedron, 2000, 56, 3263-3283.	1.9	519
2	Covalent Modifiers: A Chemical Perspective on the Reactivity of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions. Journal of Medicinal Chemistry, 2017, 60, 839-885.	6.4	359
3	A Rhodium(I)-Catalyzed Formal Allenic Alder Ene Reaction for the Rapid and Stereoselective Assembly of Cross-Conjugated Trienes. Journal of the American Chemical Society, 2002, 124, 15186-15187.	13.7	173
4	An Allenic Pausonâ^'Khand-Type Reaction:  A Reversal in Ï€-Bond Selectivity and the Formation of Seven-Membered Rings. Organic Letters, 2002, 4, 1931-1934.	4.6	132
5	A new allenic Pauson-Khand cycloaddition for the preparation of \hat{l}_{\pm} -methylene cyclopentenones. Tetrahedron Letters, 1995, 36, 2407-2410.	1.4	106
6	Microwave-Assisted Intramolecular [2 + 2] Allenic Cycloaddition Reaction for the Rapid Assembly of Bicyclo[4.2.0]octa-1,6-dienes and Bicyclo[5.2.0]nona-1,7-dienes. Organic Letters, 2005, 7, 3473-3475.	4.6	100
7	Differentiating Mechanistic Possibilities for the Thermal, Intramolecular [2 + 2] Cycloaddition of Alleneâ^Ynes. Journal of the American Chemical Society, 2010, 132, 11952-11966.	13.7	94
8	Allenes and Transition Metals:  A Diverging Approach to Heterocycles. Organic Letters, 2004, 6, 2245-2248.	4.6	90
9	Unique Strategy for the Assembly of the Carbon Skeleton of Guanacastepene A Using an Allenic Pausonâ^Khand-Type Reaction. Organic Letters, 2003, 5, 3491-3494.	4.6	87
10	A Short Synthesis of the Potent Antitumor Agent ($\hat{A}\pm$)-Hydroxymethylacylfulvene Using an Allenic Pauson-Khand Type Cycloaddition. Journal of the American Chemical Society, 1999, 121, 5087-5088.	13.7	83
11	An Intramolecular Allenic [2 + 2 + 1] Cycloaddition. Journal of Organic Chemistry, 1998, 63, 6535-6545.	3.2	77
12	Chiral Nonracemic α-Alkylidene and α-Silylidene Cyclopentenones from Chiral Allenes Using an Intramolecular Allenic Pausonâ ² Khand-Type Cycloaddition. Journal of Organic Chemistry, 2002, 67, 5156-5163.	3.2	73
13	A Formal Total Synthesis of (â^')-FR901483, Using a Tandem Cationic Aza-Cope Rearrangement/Mannich Cyclization Approach. Journal of Organic Chemistry, 2005, 70, 907-916.	3.2	67
14	Rhodium(I)-Catalyzed Ene-Allene Carbocyclization Strategy for the Formation of Azepines and Oxepines. Organic Letters, 2004, 6, 2161-2163.	4.6	65
15	Chemical methodology as a source of small-molecule checkpoint inhibitors and heat shock protein 70 (Hsp70) modulators. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6757-6762.	7.1	63
16	A Thermal Dehydrogenative Diels–Alder Reaction of Styrenes for the Concise Synthesis of Functionalized Naphthalenes. Organic Letters, 2012, 14, 4430-4433.	4.6	62
17	A Rapid Synthesis of Hydroxymethylacylfulvene (HMAF) Using the Allenic Pausonâ^'Khand Reaction. A Synthetic Approach to Either Enantiomer of This Illudane Structure. Journal of the American Chemical Society, 2000, 122, 4915-4920.	13.7	58
18	Tandem Cationic aza-Cope Rearrangementâ 'Mannich Cyclization Approach to the Core Structure of FR901483 via a Bridgehead Iminium Ion. Organic Letters, 2001, 3, 1347-1349.	4.6	56

#	Article	IF	CITATIONS
19	Consecutive Rh(I)-catalyzed Alder-ene/Diels–Alder/Diels–Alder reaction sequence affording rapid entry to polycyclic compounds. Tetrahedron, 2005, 61, 6180-6185.	1.9	55
20	The allenic Pauson-Khand cycloaddition. Dependence in π-bond selectivity on substrate structure. Tetrahedron Letters, 1998, 39, 931-934.	1.4	53
21	Heterocyclic α-Alkylidene Cyclopentenones Obtained via a Pausonâ^'Khand Reaction of Amino Acid Derived Allenynes. A Scope and Limitation Study Directed toward the Preparation of a Tricyclic Pyrrole Library. Journal of Organic Chemistry, 2005, 70, 1745-1753.	3.2	50
22	The First Total Synthesis of 15-Deoxy-Δ12,14-prostaglandinJ2and the Unambiguous Assignment of the C14Stereochemistry. Organic Letters, 2004, 6, 149-152.	4.6	49
23	Mechanistic Insight into the Dehydro-Diels–Alder Reaction of Styrene–Ynes. Journal of Organic Chemistry, 2015, 80, 11686-11698.	3.2	47
24	Intramolecular Didehydro-Diels–Alder Reaction and Its Impact on the Structure–Function Properties of Environmentally Sensitive Fluorophores Accounts of Chemical Research, 2015, 48, 2320-2329.	15.6	47
25	Strategy for the Preparation of Allenes from $\hat{l}\pm,\hat{l}^2$ -Unsaturated and Saturated Ketones via Enol Phosphates. Journal of Organic Chemistry, 1996, 61, 6096-6097.	3.2	44
26	Mo(CO) ₆ - and [Rh(CO) ₂ Cl] ₂ -Catalyzed Allenic Cyclocarbonylation Reactions of Alkynones:  Efficient Access to Bicyclic Dienediones. Organic Letters, 2008, 10, 705-708.	4.6	42
27	Computationally Guided Catalyst Design in the Type I Dynamic Kinetic Asymmetric Pauson–Khand Reaction of Allenyl Acetates. Journal of the American Chemical Society, 2017, 139, 15022-15032.	13.7	42
28	Rhodium(I)-Catalyzed Allenic Carbocyclization Reaction Affording \hat{l}' and $\hat{l}\mu$ -Lactams. Organic Letters, 2007, 9, 347-349.	4.6	41
29	Enantioselective Synthesis of 5,7-Bicyclic Ring Systems from Axially Chiral Allenes Using a Rh(I)-Catalyzed Cyclocarbonylation Reaction. Journal of Organic Chemistry, 2013, 78, 3737-3754.	3.2	41
30	A General Synthetic Route to Differentially Functionalized Angularly and Linearly Fused [6â^'7â^'5] Ring Systems: A Rh(I)-Catalyzed Cyclocarbonylation Reaction. Journal of Organic Chemistry, 2008, 73, 5064-5068.	3.2	37
31	Solution-Phase Synthesis of a Tricyclic Pyrrole-2-Carboxamide Discovery Library Applying a Stetterâ^'Paalâ^'Knorr Reaction Sequence. ACS Combinatorial Science, 2006, 8, 368-380.	3.3	36
32	An Allenic Pauson–Khand Approach to 6,12-Guaianolides. Organic Letters, 2011, 13, 6304-6307.	4.6	36
33	A silicon-tethered allenic Pauson–Khand reaction. Tetrahedron Letters, 2002, 43, 3735-3738.	1.4	34
34	Computational Insight Concerning Catalytic Decision Points of the Transition Metal Catalyzed [2 + 2 + 1] Cyclocarbonylation Reaction of Allenes. Organometallics, 2006, 25, 5204-5206.	2.3	32
35	Rh(I)-Catalyzed Cyclocarbonylation of Allenol Esters To Prepare Acetoxy 4-Alkylidenecyclopent-3-en-2-ones. Journal of Organic Chemistry, 2009, 74, 8314-8320.	3.2	27
36	Solid-Phase Synthesis of BRL 49653. Journal of Organic Chemistry, 1999, 64, 1723-1726.	3.2	26

#	Article	IF	Citations
37	Diverging Rh(I)-Catalyzed Carbocylization Strategy to Prepare a Library of Unique Cyclic Ethers. ACS Combinatorial Science, 2008, 10, 235-246.	3.3	25
38	A Redox Economical Synthesis of Bioactive 6,12-Guaianolides. Organic Letters, 2013, 15, 2644-2647.	4.6	25
39	Structurally Unique Inhibitors of Human Mitogen-Activated Protein Kinase Phosphatase-1 Identified in a Pyrrole Carboxamide Library. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 940-947.	2.5	24
40	Rhodium(I)-Catalyzed Cycloisomerization Reaction of Yne-Allenamides: An Approach to Cyclic Enamides. Synlett, 2008, 2008, 2303-2308.	1.8	23
41	Intramolecular Didehydro-Diels–Alder Reaction for the Synthesis of Benzo- and Dihydrobenzo-Fused Heterocycles. Organic Letters, 2017, 19, 1500-1503.	4.6	21
42	Cycloaddition Reactions of Amino-Acid Derived Cross-Conjugated Trienes: Stereoselective Synthesis of Novel Heterocyclic Scaffolds. Heterocycles, 2006, 70, 367.	0.7	21
43	The allenic Alder-ene reaction: constitutional group selectivity and its application to the synthesis of ovalicin. Tetrahedron, 2006, 62, 10541-10554.	1.9	19
44	Diverging DOS Strategy Using an Allene-Containing Tryptophan Scaffold and a Library Design that Maximizes Biologically Relevant Chemical Space While Minimizing the Number of Compounds. ACS Combinatorial Science, 2011, 13, 166-174.	3.8	18
45	Complete transfer of chirality in an intramolecular, thermal $[2 + 2]$ cycloaddition of allene-ynes to form non-racemic spirooxindoles. Beilstein Journal of Organic Chemistry, 2011, 7, 601-605.	2.2	17
46	Synthesis of Guaianolide Analogues with a Tunable \hat{l}_{\pm} -Methyleneâ \hat{l}_{3} -lactam Electrophile and Correlating Bioactivity with Thiol Reactivity. Journal of Medicinal Chemistry, 2020, 63, 14951-14978.	6.4	17
47	Mechanism and Origins of Enantioselectivity in the Rh(I)-Catalyzed Pauson–Khand Reaction: Comparison of Bidentate and Monodentate Chiral Ligands. ACS Catalysis, 2021, 11, 323-336.	11.2	15
48	Design and Synthesis of a Library of Tetracyclic Hydroazulenoisoindoles. ACS Combinatorial Science, 2009, 11, 486-494.	3.3	14
49	Stereoselective preparation of vinyl sulfones by protodesilylation of allyl silanes. Tetrahedron Letters, 1993, 34, 2867-2870.	1.4	13
50	A Rh(I)-Catalyzed Cycloisomerization Reaction Affording Cyclic Trienones. Synlett, 2008, 2008, 759-764.	1.8	13
51	Alkyne Ligation Handles: Propargylation of Hydroxyl, Sulfhydryl, Amino, and Carboxyl Groups via the Nicholas Reaction. Organic Letters, 2016, 18, 4566-4569.	4.6	11
52	Synthesis and in silico screening of a library of \hat{l}^2 -carboline-containing compounds. Beilstein Journal of Organic Chemistry, 2012, 8, 1048-1058.	2.2	10
53	An allenic [2+2+1] cycloaddition. Advances in Cycloaddition, 1999, , 211-237.	0.5	10
54	Conditions for a Rh(I)-catalyzed $[2+2+1]$ cycloaddition reaction with methyl substituted allenes and alkynes. Tetrahedron Letters, 2015, 56, 3546-3549.	1.4	9

#	Article	IF	CITATIONS
55	The Rhodium(I)-Catalyzed Alder-Ene Reaction. , 2005, , 151-172.		8
56	Synthesis of the Naturally Occurring (-)-1,3,5-Tri-O-Caffeoylquinic Acid. Synlett, 2009, 2009, 1517-1519.	1.8	7
57	Metal-Free C–C Coupling of an Allenyl Sulfone with Picolyl Amides to Access Vinyl Sulfones via Pyridine-Initiated In Situ Generation of Sulfinate Anion. Journal of Organic Chemistry, 2020, 85, 7959-7975.	3.2	7
58	Allene chemistry. Beilstein Journal of Organic Chemistry, 2011, 7, 394-395.	2.2	6
59	Thiol Reactivity of <i>N</i> -Aryl α-Methylene-γ-lactams: A Reactive Group for Targeted Covalent Inhibitor Design. Journal of Organic Chemistry, 2021, 86, 11926-11936.	3.2	6
60	A thermally-induced, tandem $[3,3]$ -sigmatropic rearrangement/ $[2+2]$ cycloaddition approach to carbocyclic spirooxindoles. Beilstein Journal of Organic Chemistry, 2010, 6, 33.	2.2	5
61	Rh(I)-Catalyzed Allenic Pauson–Khand Reaction to Access the Thapsigargin Core: Influence of Furan and Allenyl Chloroacetate Groups on Enantioselectivity. Organic Letters, 2022, 24, 995-999.	4.6	1
62	Chiral Nonracemic α-Alkylidene and α-Silylidene Cyclopentenones from Chiral Allenes Using an Intramolecular Allenic Pauson—Khand-Type Cycloaddition ChemInform, 2003, 34, no.	0.0	0
63	Heterocyclic α-Alkylidene Cyclopentenones Obtained via a Pauson—Khand Reaction of Amino Acid Derived Allenynes. A Scope and Limitation Study Directed Toward the Preparation of a Tricyclic Pyrrole Library ChemInform, 2005, 36, no.	0.0	0
64	Microwave-Assisted Intramolecular $[2 + 2]$ Allenic Cycloaddition Reaction for the Rapid Assembly of Bicyclo $[4.2.0]$ octa-1,6-dienes and Bicyclo $[5.2.0]$ nona-1,7-dienes ChemInform, 2005, 36, no.	0.0	0
65	Chapter 9 Rhodium-catalyzed cycloisomerization reactions of allenes in diversity-oriented synthesis. Strategies and Tactics in Organic Synthesis, 2008, 7, 328-X.	0.1	O