Dacheng Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8901474/publications.pdf

Version: 2024-02-01

147801 71685 6,612 74 31 citations h-index papers

g-index 77 77 77 10193 docs citations times ranked citing authors all docs

76

#	Article	IF	CITATIONS
1	Epitaxial etching of organic single crystals. Chinese Chemical Letters, 2022, 33, 533-536.	9.0	3
2	Olefin-linked covalent organic frameworks with twisted tertiary amine knots for enhanced ultraviolet detection. Chinese Chemical Letters, 2022, 33, 2621-2624.	9.0	7
3	<scp>Twoâ€Dimensional Metalâ€Organic</scp> Frameworks and Covalent Organic Frameworks. Chinese Journal of Chemistry, 2022, 40, 1359-1385.	4.9	31
4	Flexible force sensitive frequency reconfigurable antenna base on stretchable conductive fabric. Journal Physics D: Applied Physics, 2022, 55, 195301.	2.8	5
5	Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nature Biomedical Engineering, 2022, 6, 276-285.	22.5	153
6	Ultra-Fast Synthesis of Single-Crystalline Three-Dimensional Covalent Organic Frameworks and Their Applications in Polarized Optics. Chemistry of Materials, 2022, 34, 2886-2895.	6.7	12
7	Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chemical Reviews, 2022, 122, 10319-10392.	47.7	89
8	Triple-Probe DNA Framework-Based Transistor for SARS-CoV-2 10-in-1 Pooled Testing. Nano Letters, 2022, 22, 3307-3316.	9.1	24
9	Self-Expanding Molten Salt-Driven Growth of Patterned Transition-Metal Dichalcogenide Crystals. Journal of the American Chemical Society, 2022, 144, 8746-8755.	13.7	15
10	Microconformal electrode-dielectric integration for flexible ultrasensitive robotic tactile sensing. Nano Energy, 2021, 80, 105580.	16.0	63
11	Short-wavelength ultraviolet dosimeters based on DNA nanostructure-modified graphene field-effect transistors. Chemical Communications, 2021, 57, 5071-5074.	4.1	6
12	Plasma-Enhanced Chemical Vapor Deposition of Two-Dimensional Materials for Applications. Accounts of Chemical Research, 2021, 54, 1011-1022.	15.6	63
13	Colossal Terahertz Photoresponse at Room Temperature: A Signature of Type-II Dirac Fermiology. ACS Nano, 2021, 15, 5138-5146.	14.6	17
14	A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics. Science Advances, 2021, 7, .	10.3	31
15	Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nature Communications, 2021, 12, 5077.	12.8	63
16	Ultrasensitive Detection of SARS-CoV-2 Antibody by Graphene Field-Effect Transistors. Nano Letters, 2021, 21, 7897-7904.	9.1	64
17	Shapeâ€Engineerable Silk Fibroin Papers for Ideal Substrate Alternatives of Plastic Electronics. Advanced Functional Materials, 2021, 31, 2104088.	14.9	18
18	High-performance mid-infrared photodetection based on Bi ₂ Se ₃ maze and free-standing nanoplates. Nanotechnology, 2021, 32, 105705.	2.6	9

#	Article	IF	CITATIONS
19	Direct SARS-CoV-2 Nucleic Acid Detection by Y-Shaped DNA Dual-Probe Transistor Assay. Journal of the American Chemical Society, 2021, 143, 17004-17014.	13.7	79
20	Rapid SARS-CoV-2 Nucleic Acid Testing and Pooled Assay by Tetrahedral DNA Nanostructure Transistor. Nano Letters, 2021, 21, 9450-9457.	9.1	33
21	Ultraprecise Antigen 10-in-1 Pool Testing by Multiantibodies Transistor Assay. Journal of the American Chemical Society, 2021, 143, 19794-19801.	13.7	48
22	Shapeâ€Engineerable Silk Fibroin Papers for Ideal Substrate Alternatives of Plastic Electronics (Adv.) Tj ETQq0 0 (0 rgBT/Ov 14.9	erlgck 10 Tf 5
23	Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection. Journal of Semiconductors, 2020, 41, 072907.	3.7	9
24	Anisotropic ultrasensitive PdTe ₂ -based phototransistor for room-temperature long-wavelength detection. Science Advances, 2020, 6, .	10.3	74
25	Self-Controlled Growth of Covalent Organic Frameworks by Repolymerization. Chemistry of Materials, 2020, 32, 5634-5640.	6.7	37
26	Graphene Fieldâ€Effect Transistors on Hexagonalâ€Boron Nitride for Enhanced Interfacial Thermal Dissipation. Advanced Electronic Materials, 2020, 6, 2000059.	5.1	8
27	Antifouling Fieldâ€Effect Transistor Sensing Interface Based on Covalent Organic Frameworks. Advanced Electronic Materials, 2020, 6, 1901169.	5.1	26
28	Catalyst-Free Growth of Two-Dimensional BC _{<i>x</i>} N Materials on Dielectrics by Temperature-Dependent Plasma-Enhanced Chemical Vapor Deposition. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33113-33120.	8.0	15
29	Strain-Sensitive Fluorescence from Two-Dimensional Organic Crystal. Journal of Physical Chemistry Letters, 2020, 11, 1909-1914.	4.6	6
30	Broadband InSb/Si heterojunction photodetector with graphene transparent electrode. Nanotechnology, 2020, 31, 315204.	2.6	22
31	Synthesis of large-area uniform Si ₂ Te ₃ thin films for p-type electronic devices. Nanoscale, 2020, 12, 11242-11250.	5.6	8
32	Highly stable all-in-one photoelectrochemical electrodes based on carbon nanowalls. Nanotechnology, 2020, 31, 335401.	2.6	2
33	Innerâ€Evaporator Modification of Lowâ€Cost Metal Electrodes of Organic Fieldâ€Effect Transistors by 2D Polyporphyrin. Advanced Electronic Materials, 2019, 5, 1900447.	5.1	4
34	Nanoscale thermal mapping of few-layer organic crystals. CrystEngComm, 2019, 21, 5402-5409.	2.6	5
35	A two-dimensional cross-linked polythiophene network. Journal of Materials Chemistry C, 2019, 7, 9362-9368.	5.5	8
36	Distinctive Performance of Terahertz Photodetection Driven by Chargeâ€Densityâ€Wave Order in CVDâ€Grown Tantalum Diselenide. Advanced Functional Materials, 2019, 29, 1905057.	14.9	13

#	Article	lF	CITATIONS
37	Surface Catalytic Modification of Conjugated Polymer on Low ost Bottom Contact for Improved Injection Efficiency of Organic Transistors. Advanced Electronic Materials, 2019, 5, 1900028.	5.1	1
38	Nitrogen Doped Carbons Derived From Graphene Aerogel Templated Triazine-Based Conjugated Microporous Polymers for High-Performance Supercapacitors. Frontiers in Chemistry, 2019, 7, 142.	3.6	5
39	Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nature Communications, 2019, 10, 1188.	12.8	71
40	Free radical sensors based on inner-cutting graphene field-effect transistors. Nature Communications, 2019, 10, 1544.	12.8	85
41	Two-dimensional self-healing hydrogen-bond-based supramolecular polymer film. Chinese Chemical Letters, 2019, 30, 961-965.	9.0	14
42	Enhanced photoelectrical response of thermodynamically epitaxial organic crystals at the two-dimensional limit. Nature Communications, 2019, 10, 756.	12.8	71
43	Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors. NPG Asia Materials, 2018, 10, 318-327.	7.9	31
44	Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nature Communications, 2018, 9, 193.	12.8	117
45	Roomâ€Temperature Highâ€Gain Longâ€Wavelength Photodetector via Optical–Electrical Controlling of Hot Carriers in Graphene. Advanced Optical Materials, 2018, 6, 1800836.	7.3	28
46	Hydrogen-bonding-directed helical nanofibers in a polythiophene-based all-conjugated diblock copolymer. Soft Matter, 2018, 14, 5906-5912.	2.7	13
47	Large photoelectric-gating effect of two-dimensional van-der-Waals organic/tungsten diselenide heterointerface. Npj 2D Materials and Applications, 2018, 2, .	7.9	28
48	Abnormal n-type doping effect in nitrogen-doped tungsten diselenide prepared by moderate ammonia plasma treatment. Nano Research, 2018, 11, 4923-4930.	10.4	27
49	Solvent-Free Process to Produce Three Dimensional Graphene Network with High Electrochemical Stability. Journal of Physical Chemistry C, 2017, 121, 3062-3069.	3.1	16
50	Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Research, 2017, 10, 802-813.	10.4	206
51	Photo-switchable field-effect transistors based on two-dimensional stilbene oligomer crystals. Journal of Materials Chemistry C, 2017, 5, 9597-9601.	5 . 5	19
52	Hemin/Au nanorods/self-doped TiO2nanowires as a novel photoelectrochemical bioanalysis platform. Analyst, The, 2017, 142, 2805-2811.	3 . 5	8
53	Hierarchical Porous Carbon Materials Derived from Sheep Manure for Highâ€Capacity Supercapacitors. ChemSusChem, 2016, 9, 932-937.	6.8	63
54	Direct growth of nanographene at low temperature from carbon black for highly sensitive temperature detectors. Nanotechnology, 2016, 27, 505603.	2.6	10

#	Article	IF	Citations
55	Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-Performance Pressure-Sensitive Sensors. ACS Applied Materials & Interfaces, 2016, 8, 16869-16875.	8.0	35
56	Low Temperature Critical Growth of High Quality Nitrogen Doped Graphene on Dielectrics by Plasma-Enhanced Chemical Vapor Deposition. ACS Nano, 2015, 9, 164-171.	14.6	125
57	Tunable optical absorption and interactions in graphene via oxygen plasma. Physical Review B, 2014, 89,	3.2	42
58	Critical Crystal Growth of Graphene on Dielectric Substrates at Low Temperature for Electronic Devices. Angewandte Chemie - International Edition, 2013, 52, 14121-14126.	13.8	125
59	Controllable Chemical Vapor Deposition Growth of Few Layer Graphene for Electronic Devices. Accounts of Chemical Research, 2013, 46, 106-115.	15.6	88
60	Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes. Nature Communications, 2013, 4, 1374.	12.8	125
61	Controllable Synthesis of Graphene and Its Applications. Advanced Materials, 2010, 22, 3225-3241.	21.0	375
62	A Generalized Method for Evaluating the Metallic-to-Semiconducting Ratio of Separated Single-Walled Carbon Nanotubes by UVâ^'visâ^'NIR Characterization. Journal of Physical Chemistry C, 2010, 114, 12095-12098.	3.1	24
63	Fabrication and characterization of molecular scale field-effect transistors. Journal of Materials Chemistry, 2010, 20, 2305.	6.7	16
64	Minimizing purification-induced defects in single-walled carbon nanotubes gives films with improved conductivity. Nano Research, 2009, 2, 865.	10.4	13
65	Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 2009, 9, 1752-1758.	9.1	2,822
66	Scalable Synthesis of Few-Layer Graphene Ribbons with Controlled Morphologies by a Template Method and Their Applications in Nanoelectromechanical Switches. Journal of the American Chemical Society, 2009, 131, 11147-11154.	13.7	214
67	Patterned Graphene as Source/Drain Electrodes for Bottomâ€Contact Organic Fieldâ€Effect Transistors. Advanced Materials, 2008, 20, 3289-3293.	21.0	373
68	The Intramolecular Junctions of Carbon Nanotubes. Advanced Materials, 2008, 20, 2815-2841.	21.0	126
69	Inside Front Cover: The Intramolecular Junctions of Carbon Nanotubes (Adv. Mater. 15/2008). Advanced Materials, 2008, 20, NA-NA.	21.0	0
70	Real Time and in Situ Control of the Gap Size of Nanoelectrodes for Molecular Devices. Nano Letters, 2008, 8, 1625-1630.	9.1	50
71	Nanophotoswitches with a high on/off ratio based on a structure of indium tin oxide/organic insulator/metal. Applied Physics Letters, 2008, 92, 043302.	3.3	5
72	Synthesis and Device Integration of Carbon Nanotube/Silica Coreâ^'Shell Nanowires. Journal of Physical Chemistry C, 2007, 111, 7661-7665.	3.1	19

DACHENG WEI

#	Article	IF	CITATION
73	A Magnetism-Assisted Chemical Vapor Deposition Method To Produce Branched or Iron-Encapsulated Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129, 7364-7368.	13.7	37
74	A New Method to Synthesize Complicated Multibranched Carbon Nanotubes with Controlled Architecture and Composition. Nano Letters, 2006, 6, 186-192.	9.1	93