Shengtian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8899642/publications.pdf

Version: 2024-02-01

394421 454955 35 918 19 30 citations g-index h-index papers 35 35 35 1387 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrochemical sensor based on the polyoxometalate nanocluster $[(NH4)12[Mo36(NO)4O108(H2O)16]\hat{A}\cdot 33H2O$ and molybdenum disulfide nanocomposite materials for simultaneous detection of dihydroxybenzene isomers. Microchemical Journal, 2022, 177, 107232.	4.5	5
2	Fabrication of a novel nanocomposite electrode with ZnO-MoO3 and biochar derived from mushroom biomaterials for the detection of acetaminophen in the presence of DA. Microchemical Journal, 2021, 161, 105719.	4.5	22
3	Polyoxometalate@g-C3N4 nanocomposite for enhancing visible light photoelectrocatalytic performance. Chemosphere, 2021, 279, 130559.	8.2	13
4	A fast and facile electrochemical method for the simultaneous detection of epinephrine, uric acid and folic acid based on ZrO2/ZnO nanocomposites as sensing material. Analytica Chimica Acta, 2020, 1104, 69-77.	5.4	49
5	The fabrication of trifunctional polyoxometalate hybrids for the cascade conversion of glycerol to lactic acid. Catalysis Science and Technology, 2020, 10, 207-214.	4.1	10
6	Electrochemical sensor based on anÂelectrode modified withÂporous graphitic carbon nitride nanosheetsÂ(C3N4)Âembedded in graphene oxideÂfor simultaneous determination of ascorbic acid, dopamine and uric acid. Mikrochimica Acta, 2020, 187, 149.	5.0	38
7	Polyoxometalate Immobilized on Graphene via Click Reaction for Simultaneous Dismutation of H ₂ O ₂ and Oxidation of Sulfur Mustard Simulant. ACS Applied Nano Materials, 2019, 2, 6971-6981.	5.0	21
8	Fabrication of Electro-Active Pt/IMo ₆ O ₂₄ /Graphene Oxide Nanohybrid Modified Electrode for the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Journal of the Electrochemical Society, 2019, 166, H351-H358.	2.9	23
9	Fabrication of Trifunctional Polyoxometalateâ€Decorated Chitosan Nanofibers for Selective Production of 2,5â€Diformylfuran. ChemSusChem, 2019, 12, 3515-3523.	6.8	20
10	An ultrasensitive sensor based on polyoxometalate and zirconium dioxide nanocomposites hybrids material for simultaneous detection of toxic clenbuterol and ractopamine. Sensors and Actuators B: Chemical, 2019, 288, 347-355.	7.8	38
11	Visual detection of H ₂ O ₂ and melamine based on PW ₁₁ MO ₃₉ ^{nâ^²} (M = Cu ²⁺ , Co ²⁺ ,) Tj ETQq1 1 PW ₉ M ₃ O ₃₄ ^{nâ^²} (M = Cu ²⁺ ,) Tj ETQq1 1 0.7843	2.8	14
12	First triple-functional polyoxometalate Cs10.6[H2.4GeNb13O41] for highly selective production of methyl levulinate directly from cellulose. Cellulose, 2018, 25, 6405-6419.	4.9	18
13	Incorporation of Ce3+ ions into dodecatungstophosphoric acid for the production of biodiesel from waste cooking oil. Materials Science and Engineering C, 2018, 92, 922-931.	7.3	7
14	Fabrication of polyoxometalate/GO/PDDA hybrid nanocomposite modified electrode and electrocatalysis for nitrite ion, ascorbic acid and dopamine. Journal of Electroanalytical Chemistry, 2018, 824, 91-98.	3.8	32
15	Heteropolyacids embedded in a lipid bilayer covalently bonded to graphene oxide for the facile one-pot conversion of glycerol to lactic acid. Journal of Materials Chemistry A, 2017, 5, 8325-8333.	10.3	27
16	Production of Biodiesel Through Esterification Reaction Using Choline Exchanging Polytungstoboronic Acids as Temperature-Responsive Catalysts. Catalysis Surveys From Asia, 2017, 21, 151-159.	2.6	2
17	Efficient mineralization of phenol by a temperature-responsive polyoxometalate catalyst under wet peroxide oxidation at lower temperatures. RSC Advances, 2017, 7, 43681-43688.	3.6	4
18	Decoration of chitosan microspheres with BrÃ, nsted heteropolyacids and Lewis ion Ti: trifunctional catalysts for esterification to biodiesel. RSC Advances, 2017, 7, 42422-42429.	3.6	11

#	Article	IF	CITATIONS
19	Fabrication of H ₃ PW ₁₂ O ₄₀ /agarose membrane for catalytic production of biodiesel through esterification and transesterification. RSC Advances, 2016, 6, 81794-81801.	3.6	11
20	Single step conversion of cellulose to levulinic acid using temperature-responsive dodeca-aluminotungstic acid catalysts. Green Chemistry, 2016, 18, 742-752.	9.0	84
21	Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions. Scientific Reports, 2015, 5, 13764.	3.3	41
22	Fabrication of a Dendritic Heteropolyacid as Selfâ€Separated, Waterâ€Resistant Catalyst for Biodiesel Fuel Production. Energy Technology, 2015, 3, 871-877.	3.8	2
23	On-plate enzyme and inhibition assay of glucose-6-phosphate dehydrogenase using thin-layer chromatography. Journal of Separation Science, 2015, 38, 2907-2914.	2.5	5
24	A heteropoly acid ionic crystal containing Cr as an active catalyst for dehydration of monosaccharides to produce 5-HMF in water. Catalysis Science and Technology, 2015, 5, 2496-2502.	4.1	48
25	Oxidative Desulfurization by Oxygen Using Amphiphilic Quaternary Ammonium Peroxovanadium Polyoxometalates. Catalysis Surveys From Asia, 2015, 19, 257-264.	2.6	15
26	Hydrolysis and alcoholysis of polysaccharides with high efficiency catalyzed by a (C ₁₆ TA) _X H _{6â^x} P ₂ W ₁₈ O ₆₂ nanoassembly. RSC Advances, 2015, 5, 94155-94163.	3.6	14
27	Conversion of highly concentrated fructose into 5-hydroxymethylfurfural by acid–base bifunctional HPA nanocatalysts induced by choline chloride. RSC Advances, 2014, 4, 63055-63061.	3.6	48
28	Degradation of phenol by air and polyoxometalate nanofibers using a continuous mode. RSC Advances, 2014, 4, 25404-25409.	3.6	3
29	Ultra-deep desulfurization via reactive adsorption on peroxophosphomolybdate/agarose hybrids. Chemosphere, 2014, 111, 631-637.	8.2	14
30	Graphene oxide and reduced graphene oxide as novel stationary phases via electrostatic assembly for openâ€tubular capillary electrochromatography. Electrophoresis, 2013, 34, 1869-1876.	2.4	30
31	A water-tolerant C16H3PW11CrO39 catalyst for the efficient conversion of monosaccharides into 5-hydroxymethylfurfural in a micellar system. RSC Advances, 2013, 3, 23051.	3.6	27
32	Acid–base bifunctional HPA nanocatalysts promoting heterogeneous transesterification and esterification reactions. Catalysis Science and Technology, 2013, 3, 2204.	4.1	50
33	Removal of organic dye by air and macroporous ZnO/MoO3/SiO2 hybrid under room conditions. Applied Surface Science, 2011, 257, 7913-7919.	6.1	46
34	Catalytic wet air oxidation of dye pollutants by polyoxomolybdate nanotubes under room condition. Applied Catalysis B: Environmental, 2009, 86, 182-189.	20.2	79
35	Formation of gold nanoparticles and self-assembly into dimer and trimer aggregates. Materials Letters, 2005, 59, 1383-1386.	2.6	47