
Christian D Schunn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8899221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The relationship of analogical distance to analogical function and preinventive structure: the case of engineering design. Memory and Cognition, 2007, 35, 29-38.	0.9	375
2	Scaffolded writing and rewriting in the discipline: A web-based reciprocal peer review system. Computers and Education, 2007, 48, 409-426.	5.1	337
3	The nature of feedback: how different types of peer feedback affect writing performance. Instructional Science, 2009, 37, 375-401.	1.1	315
4	Are badges useful in education?: it depends upon the type of badge and expertise of learner. Educational Technology Research and Development, 2013, 61, 217-232.	2.0	315
5	A Study of Design Fixation, Its Mitigation and Perception in Engineering Design Faculty. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	1.7	260
6	Middle‣chool Science Through Designâ€Based Learning versus Scripted Inquiry: Better Overall Science Concept Learning and Equity Gap Reduction. Journal of Engineering Education, 2008, 97, 71-85.	1.9	254
7	Validity and reliability of scaffolded peer assessment of writing from instructor and student perspectives Journal of Educational Psychology, 2006, 98, 891-901.	2.1	249
8	A mechanistic account of the mirror effect for word frequency: A computational model of remember–know judgments in a continuous recognition paradigm Journal of Experimental Psychology: Learning Memory and Cognition, 2000, 26, 294-320.	0.7	237
9	Learning Through Case Comparisons: A Meta-Analytic Review. Educational Psychologist, 2013, 48, 87-113.	4.7	205
10	On the Benefits and Pitfalls of Analogies for Innovative Design: Ideation Performance Based on Analogical Distance, Commonness, and Modality of Examples. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	1.7	201
11	Bringing Engineering Design into High School Science Classrooms: The Heating/Cooling Unit. Journal of Science Education and Technology, 2008, 17, 454-465.	2.4	190
12	Investigating the multidimensionality of engagement: Affective, behavioral, and cognitive engagement across science activities and contexts. Contemporary Educational Psychology, 2018, 53, 87-105.	1.6	189
13	Students' perceptions about peer assessment for writing: their origin and impact on revision work. Instructional Science, 2011, 39, 387-406.	1.1	187
14	The Meaning of "Near―and "Far― The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output. Journal of Mechanical Design, Transactions of the ASME, 2013, 135, .	1.7	177
15	Commenting on Writing. Written Communication, 2006, 23, 260-294.	0.7	154
16	Priming, analogy, and awareness in complex reasoning. Memory and Cognition, 1996, 24, 271-284.	0.9	150
17	Integrating perceptual and cognitive modeling for adaptive and intelligent human-computer interaction. Proceedings of the IEEE, 2002, 90, 1272-1289.	16.4	128
18	The nature of science identity and its role as the driver of student choices. International Journal of STEM Education, 2018, 5, 48.	2.7	121

#	Article	IF	CITATIONS
19	The Generality/Specificity of Expertise in Scientific Reasoning. Cognitive Science, 1999, 23, 337-370.	0.8	112
20	Do the best design ideas (really) come from conceptually distant sources of inspiration?. Design Studies, 2015, 36, 31-58.	1.9	106
21	Female students with A's have similar physics self-efficacy as male students with C's in introductory courses: A cause for alarm?. Physical Review Physics Education Research, 2018, 14, .	1.4	105
22	Understanding the benefits of providing peer feedback: how students respond to peers' texts of varying quality. Instructional Science, 2015, 43, 591-614.	1.1	104
23	Task representations, strategy variability, and base-rate neglect Journal of Experimental Psychology: General, 1999, 128, 107-130.	1.5	96
24	Private Speech and Executive Functioning among High-Functioning Children with Autistic Spectrum Disorders. Journal of Autism and Developmental Disorders, 2007, 37, 1617-1635.	1.7	94
25	The Impact of an Engineering Design Curriculum on Science Reasoning in an Urban Setting. Journal of Science Education and Technology, 2009, 18, 209-223.	2.4	94
26	A Social ognitive Framework of Multidisciplinary Team Innovation. Topics in Cognitive Science, 2010, 2, 73-95.	1.1	88
27	To calculate or not to calculate: A source activation confusion model of problem familiarity's role in strategy selection Journal of Experimental Psychology: Learning Memory and Cognition, 1997, 23, 3-29.	0.7	84
28	A framework for analyzing cognitive demand and content-practices integration: Task analysis guide in science. Journal of Research in Science Teaching, 2015, 52, 659-685.	2.0	82
29	The nature of feedback: How peer feedback features affect students' implementation rate and quality of revisions Journal of Educational Psychology, 2016, 108, 1098-1120.	2.1	81
30	The role and impact of mental simulation in design. Applied Cognitive Psychology, 2009, 23, 327-344.	0.9	77
31	Families support their children's success in science learning by influencing interest and selfâ€efficacy. Journal of Research in Science Teaching, 2016, 53, 450-472.	2.0	72
32	The Impact of Analogies on Creative Concept Generation: Lessons From an <i>In Vivo</i> Study in Engineering Design. Cognitive Science, 2015, 39, 126-155.	0.8	71
33	When Making the Grade Isn't Enough: The Gendered Nature of Premed Science Course Attrition. Educational Researcher, 2019, 48, 193-204.	3.3	71
34	Developing Computational Thinking through a Virtual Robotics Programming Curriculum. ACM Transactions on Computing Education, 2018, 18, 1-20.	2.9	70
35	Another source of individual differences: Strategy adaptivity to changing rates of success Journal of Experimental Psychology: General, 2001, 130, 59-76.	1.5	64
36	Children's Motivation Toward Science Across Contexts, Manner of Interaction, and Topic. Science Education, 2014, 98, 189-215.	1.8	63

#	Article	IF	CITATIONS
37	Gendered patterns in the construction of physics identity from motivational factors. Physical Review Physics Education Research, 2019, 15, .	1.4	60
38	Accountability in peer assessment: examining the effects of reviewing grades on peer ratings and peer feedback. Studies in Higher Education, 2018, 43, 2263-2278.	2.9	59
39	A longitudinal analysis of students' motivational characteristics in introductory physics courses: Gender differences. Canadian Journal of Physics, 2018, 96, 391-405.	0.4	59
40	The Learning Benefits of Being Willing and Able to Engage in Scientific Argumentation. International Journal of Science Education, 2015, 37, 1590-1612.	1.0	57
41	The importance of iteration in creative conceptual combination. Cognition, 2015, 145, 104-115.	1.1	57
42	From feedback to revisions: Effects of feedback features and perceptions. Contemporary Educational Psychology, 2020, 60, 101826.	1.6	56
43	The dimensions and impact of informal science learning experiences on middle schoolers' attitudes and abilities in science. International Journal of Science Education, 2016, 38, 2551-2572.	1.0	55
44	Why female science, technology, engineering, and mathematics majors do not identify with physics: They do not think others see them that way. Physical Review Physics Education Research, 2019, 15, .	1.4	55
45	The neural correlates of strategic reading comprehension: Cognitive control and discourse comprehension. Neurolmage, 2011, 58, 675-686.	2.1	54
46	The Reliability and Validity of Peer Review of Writing in High School <scp>AP</scp> ÂEnglish Classes. Journal of Adolescent and Adult Literacy, 2016, 60, 13-23.	0.4	51
47	The increasingly important role of science competency beliefs for science learning in girls. Journal of Research in Science Teaching, 2017, 54, 790-822.	2.0	51
48	The role of physicality in rich programming environments. Computer Science Education, 2013, 23, 315-331.	2.7	50
49	A validation study of students' end comments: Comparing comments by students, a writing instructor, and a content instructor. Journal of Writing Research, 2009, 1, 124-152.	0.6	48
50	The Role of Robotics Teams' Collaboration Quality on Team Performance in a Robotics Tournament. Journal of Engineering Education, 2017, 106, 564-584.	1.9	47
51	Analogy as a strategy for supporting complex problem solving under uncertainty. Memory and Cognition, 2012, 40, 1352-1365.	0.9	46
52	The Growth of Multidisciplinarity in the Cognitive Science Society. Cognitive Science, 1998, 22, 107-130.	0.8	45
53	Peer-based computer-supported knowledge refinement. Communications of the ACM, 2008, 51, 83-88.	3.3	45
54	Modeling Scientific Processes With Mathematics Equations Enhances Student Qualitative Conceptual Understanding and Quantitative Problem Solving. Science Education, 2016, 100, 290-320.	1.8	44

#	Article	IF	CITATIONS
55	The Relationship Between Spatial Transformations and Iconic Gestures. Spatial Cognition and Computation, 2006, 6, 1-29.	0.6	40
56	Gender, interest, and prior experience shape opportunities to learn programming in robotics competitions. International Journal of STEM Education, 2016, 3, .	2.7	40
57	What are critical features of science curriculum materials that impact student and teacher outcomes?. Science Education, 2018, 102, 260-282.	1.8	40
58	Student attitudes that predict participation in peer assessment. Assessment and Evaluation in Higher Education, 2018, 43, 800-811.	3.9	40
59	Spontaneous Access and Analogical Incubation Effects. Creativity Research Journal, 2005, 17, 207-220.	1.7	39
60	Evaluating the impact of a facilitated learning community approach to professional development on teacher practice and student achievement. Research in Science and Technological Education, 2009, 27, 339-354.	1.4	39
61	Strategies for success: uncovering what makes students successful in design and learning. Instructional Science, 2013, 41, 773-791.	1.1	39
62	Socioeconomic gaps in science achievement. International Journal of STEM Education, 2018, 5, 38.	2.7	39
63	The interplay of conflict and analogy in multidisciplinary teams. Cognition, 2013, 126, 1-19.	1.1	38
64	The effect of math SAT on women's chemistry competency beliefs. Chemistry Education Research and Practice, 2018, 19, 342-351.	1.4	37
65	Expertise in ill-defined problem-solving domains as effective strategy use. Memory and Cognition, 2005, 33, 1377-1387.	0.9	36
66	The effects of skill diversity on commenting and revisions. Instructional Science, 2013, 41, 381-405.	1.1	36
67	Science Classroom Inquiry (SCI) Simulations: A Novel Method to Scaffold Science Learning. PLoS ONE, 2015, 10, e0120638.	1.1	36
68	Falling in love and staying in love with science: ongoing informal science experiences support fascination for all children. International Journal of Science Education, 2019, 41, 1626-1643.	1.0	35
69	Global vs. local information processing in visual/spatial problem solving: The case of traveling salesman problem. Cognitive Systems Research, 2007, 8, 192-207.	1.9	34
70	Awareness and working memory in strategy adaptivity. Memory and Cognition, 2001, 29, 254-266.	0.9	33
71	Visualizing Uncertainty. Human Factors, 2014, 56, 509-520.	2.1	33
72	The alignment of written peer feedback with draft problems and its impact on revision in peer assessment. Assessment and Evaluation in Higher Education, 2019, 44, 294-308.	3.9	32

#	Article	IF	CITATIONS
73	Social Biases and Solutions for Procedural Objectivity. Hypatia, 2011, 26, 352-373.	0.5	31
74	Intragroup Conflict Under the Microscope: Microâ€Conflicts in Naturalistic Team Discussions. Negotiation and Conflict Management Research, 2011, 4, 314-351.	1.0	31
75	Decay Versus Interference. Psychological Science, 2012, 23, 1435-1437.	1.8	31
76	The Effects of Providing and Receiving Peer Feedback on Writing Performance and Learning of Secondary School Students. American Educational Research Journal, 2021, 58, 492-526.	1.6	31
77	Measuring choice to participate in optional science learning experiences during early adolescence. Journal of Research in Science Teaching, 2015, 52, 686-709.	2.0	30
78	Dynamic Sensorimotor Planning during Long-Term Sequence Learning: The Role of Variability, Response Chunking and Planning Errors. PLoS ONE, 2012, 7, e47336.	1.1	29
79	When I grow up: the relationship of <i>science learning activation</i> to STEM career preferences. International Journal of Science Education, 2018, 40, 1034-1057.	1.0	29
80	Designâ€based learning for biology. Biochemistry and Molecular Biology Education, 2008, 36, 292-298.	0.5	28
81	Physical Design Tools Support and Hinder Innovative Engineering Design. Journal of Mechanical Design, Transactions of the ASME, 2012, 134, .	1.7	27
82	The dynamics of micro-conflicts and uncertainty in successful and unsuccessful design teams. Design Studies, 2017, 50, 39-69.	1.9	27
83	Spontaneous Access and Analogical Incubation Effects. Creativity Research Journal, 2005, 17, 207-220.	1.7	26
84	Studying teacher selection of resources in an ultra-large scale interactive system: Does metadata guide the way?. Computers and Education, 2012, 58, 551-559.	5.1	26
85	Learning Together While Designing: Does Group Size Make a Difference?. Journal of Science Education and Technology, 2012, 21, 83-94.	2.4	25
86	Improving Engagement in Program Construction Examples for Learning Python Programming. International Journal of Artificial Intelligence in Education, 2020, 30, 299-336.	3.9	25
87	Natural Language Processing techniques for researching and improving peer feedback. Journal of Writing Research, 2012, 4, 155-176.	0.6	24
88	Scientific sensemaking supports science content learning across disciplines and instructional contexts. Contemporary Educational Psychology, 2019, 59, 101802.	1.6	24
89	When peers agree, do students listen? The central role of feedback quality and feedback frequency in determining uptake of feedback. Contemporary Educational Psychology, 2020, 62, 101897.	1.6	22
90	Identifying students' perceptions of the important classroom features affecting learning aspects of a design-based learning environment. Learning Environments Research, 2008, 11, 195-209.	1.8	21

 How Do Scientists Respond to Anomalies? Different Strategies Used in Basic and Applied Science. 1.1 Topics in Cognitive Science, 2009, 1, 711-729. 	1 2	
		21
 Improving Middle School Science Learning Using Diagrammatic Reasoning. Science Education, 2016, 100, 1.8 1184-1213. 	8 2	21
 Charting the routes to revision: AnÂinterplay of writing goals, peer comments, and self-reflections from peer reviews. Instructional Science, 2017, 45, 679-707. 	1 2	21
 Improving Conceptual Understanding and Representation Skills Through Excel-Based Modeling. Journal of Science Education and Technology, 2018, 27, 30-44. 	4 2	21
 Short-Term and Long-Term Effects of POGIL in a Large-Enrollment General Chemistry Course. Journal of Chemical Education, 2020, 97, 1228-1238. 	1 2	21
96 What aspects of online peer feedback robustly predict growth in students' task performance?. 5.1 Computers in Human Behavior, 2021, 124, 106924.	1 2	21
97 The nature of mind wandering during reading varies with the cognitive control demands of the reading strategy. Brain Research, 2013, 1539, 48-60.	1 1	.9
⁹⁸ The psychological characteristics of experiences that influence science motivation and content knowledge. International Journal of Science Education, 2017, 39, 2402-2432.	0 1	.9
99 Attending to structural programming features predicts differences in learning and motivation. Journal of Computer Assisted Learning, 2018, 34, 115-128.	3 1	.9
100Thoughts on Thinking: Engaging Novice Music Students in Metacognition. Applied Cognitive Psychology, 2012, 26, 403-409.0.4	9 1	.8
101 Unpacking the Relationship Between Science Education and Applied Scientific Literacy. Research in Science Education, 2016, 46, 129-140.	4 1	.8
102 Change in Thinking Demands for Students Across the Phases of a Science Task: An Exploratory Study. 1.4 Research in Science Education, 2019, 49, 859-883.	4 1	.8
Locating and understanding the largest gender differences in pathways to science degrees. Science Education, 2020, 104, 144-163.	8 1	.8
104 Changes in the reliability and validity of peer assessment across the college years. Assessment and Evaluation in Higher Education, 2020, 45, 1073-1087.	9 1	.8
From plans to actions: A process model for why feedback features influence feedback implementation. Instructional Science, 2021, 49, 365-394.	1 1	.8
Synergistic human-agent methods for deriving effective search strategies: the case of nanoscale design. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2015, 26, 145-169.	2 1	.6
107 Uncovering Uncertainty through Disagreement. Applied Cognitive Psychology, 2016, 30, 387-400. o.	9 1	.6

108 Fine-Grained Open Learner Models. , 2017, , .

#	Article	IF	CITATIONS
109	Redesigning flipped classrooms: a learning model and its effects on student perceptions. Higher Education, 2019, 78, 711-728.	2.8	16
110	Learning to improve the quality peer feedback through experience with peer feedback. Assessment and Evaluation in Higher Education, 2021, 46, 973-992.	3.9	16
111	Writing in natural sciences: Understanding the effects of different types of reviewers on the writing. Journal of Writing Research, 2011, 2, 365-393.	0.6	16
112	Spatially distributed instructions improve learning outcomes and efficiency Journal of Educational Psychology, 2011, 103, 60-72.	2.1	15
113	Redesigning Educational Peer Review Interactions Using Computer Tools: An Introduction. Journal of Writing Research, 2012, 4, 111-119.	0.6	15
114	Expert representation of design repository space: A comparison to and validation of algorithmic output. Design Studies, 2013, 34, 729-762.	1.9	15
115	Reuse and Recycle: The Development of Adaptive Expertise, Routine Expertise, and Novelty in a Large Research Team. Applied Cognitive Psychology, 2013, 27, 415-428.	0.9	15
116	Understanding the benefits of receiving peer feedback: A case of matching ability in peer-review. Journal of Writing Research, 2016, 8, 227-265.	0.6	15
117	Factors that deepen or attenuate decline of science utility value during the middle school years. Contemporary Educational Psychology, 2017, 49, 215-225.	1.6	15
118	Determining Adequate Information for Green Building Occupant Training Materials. Journal of Green Building, 2009, 4, 143-150.	0.4	15
119	Where can we find future K-12 science and math teachers? a search by academic year, discipline, and academic performance level. Science Education, 2005, 89, 980-1006.	1.8	14
120	The role of evaluative metadata in an online teacher resource exchange. Educational Technology Research and Development, 2013, 61, 863-883.	2.0	14
121	Peer feedback and teacher feedback: a comparative study of revision effectiveness in writing instruction for EFL learners. Higher Education Research and Development, 2022, 41, 1838-1854.	1.9	14
122	Quality of Peer Feedback in relation to Instructional Design: A Comparative Study in Energy and Sustainability MOOCs. International Journal of Instruction, 2019, 12, 1025-1040.	0.6	14
123	Assessing group-level participation in fluid teams: Testing a new metric. Behavior Research Methods, 2011, 43, 522-536.	2.3	13
124	Comprehension through explanation as the interaction of the brain's coherence and cognitive control networks. Frontiers in Human Neuroscience, 2015, 9, 562.	1.0	13
125	Case studies of a robot-based game to shape interests and hone proportional reasoning skills. International Journal of STEM Education, 2015, 2, .	2.7	13
126	Emergent Systems Energy Laws for Predicting Myosin Ensemble Processivity. PLoS Computational Biology, 2015, 11, e1004177.	1.5	13

#	Article	IF	CITATIONS
127	Different underlying motivations and abilities predict student versus teacher persistence in an online course. Educational Technology Research and Development, 2017, 65, 1471-1493.	2.0	13
128	Teachers' goals predict computational thinking gains in robotics. Information and Learning Science, 2019, 120, 308-326.	0.8	13
129	Maximizing research and development resources: identifying and testing "load-bearing conditions― for educational technology innovations. Educational Technology Research and Development, 2016, 64, 245-262.	2.0	12
130	Are we ready for citywide learning? Examining the nature of within―and betweenâ€program pathways in a communityâ€wide learning initiative. Journal of Community Psychology, 2017, 45, 413-425.	1.0	12
131	PCEX., 2018,,.		12
132	Navigation support in complex open learner models: assessing visual design alternatives. New Review of Hypermedia and Multimedia, 2018, 24, 160-192.	0.9	12
133	Developing a Focus for Green Building Occupant Training Materials. Journal of Green Building, 2009, 4, 175-184.	0.4	12
134	Design of Complex Biologically Based Nanoscale Systems Using Multi-Agent Simulations and Structure–Behavior–Function Representations. Journal of Mechanical Design, Transactions of the ASME, 2013, 135, .	1.7	11
135	Scientifically literate action: Key barriers and facilitators across context and content. Public Understanding of Science, 2014, 23, 718-733.	1.6	11
136	How much professional development is needed with educative curriculum materials? It depends upon the intended student learning outcomes. Science Education, 2017, 101, 1015-1033.	1.8	11
137	The integration between nonsymbolic and symbolic numbers: Evidence from an <scp>EEG</scp> study. Brain and Behavior, 2018, 8, e00938.	1.0	11
138	Identifying Thesis and Conclusion Statements in Student Essays to Scaffold Peer Review. Lecture Notes in Computer Science, 2014, , 254-259.	1.0	11
139	Analytical assessment of course sequencing: The case of methodological courses in psychology Journal of Educational Psychology, 2019, 111, 91-103.	2.1	11
140	Strategy Adaptiyity and Individual Differences. Psychology of Learning and Motivation - Advances in Research and Theory, 1998, 38, 115-154.	0.5	10
141	Disentangling intensity from breadth of science interest: What predicts learning behaviors?. Instructional Science, 2016, 44, 423-440.	1.1	10
142	The D3 Methodology: Bridging Science and Design for Bio-Based Product Development. Journal of Mechanical Design, Transactions of the ASME, 2016, 138, .	1.7	10
143	Finding an optimal balance between agreement and performance in an online reciprocal peer evaluation system. Studies in Educational Evaluation, 2018, 56, 94-101.	1.2	10
144	The effects of school-related and home-related optional science experiences on science attitudes and knowledge Journal of Educational Psychology, 2018, 110, 798-810.	2.1	10

#	Article	IF	CITATIONS
145	High Regularities in Eyeâ€Movement Patterns Reveal the Dynamics of the Visual Working Memory Allocation Mechanism. Cognitive Science, 2010, 34, 322-337.	0.8	9
146	Improving human understanding and design of complex multi-level systems with animation and parametric relationship supports. Design Science, 2015, 1, .	1.1	9
147	The effect of blended instruction on accelerated learning. Technology, Pedagogy and Education, 2016, 25, 269-286.	3.3	9
148	What Drives Attendance at Informal Learning Activities? A Study of Two Art Programs. Curator, 2017, 60, 351-364.	0.2	9
149	Is the Link from Working Memory to Analogy Causal? No Analogy Improvements following Working Memory Training Gains. PLoS ONE, 2014, 9, e106616.	1.1	9
150	Strategy variability: How too much of a good thing can hurt performance. Memory and Cognition, 2006, 34, 1652-1666.	0.9	8
151	Unpacking the temporal advantage of distributing complex visual displays. International Journal of Human Computer Studies, 2012, 70, 812-827.	3.7	8
152	Effects of Trained Peer vs. Teacher Feedback on EFL Students' Writing Performance, Self-Efficacy, and Internalization of Motivation. Frontiers in Psychology, 2021, 12, 788474.	1.1	8
153	Cognitive-Based Search Strategies for Complex Bio-Nanotechnology Design Derived Through Symbiotic Human and Agent-Based Approaches. , 2014, , .		7
154	Cognitive Demand of Model Tracing Tutor Tasks: Conceptualizing and Predicting How Deeply Students Engage. Technology, Knowledge and Learning, 2015, 20, 317-337.	3.1	7
155	The Generality/Specificity of Expertise in Scientific Reasoning. , 1999, 23, 337.		7
156	"Putting Blinkers on a Blind Man― , 2009, , 48-74.		7
157	Predicting pathways to optional summer science experiences by socioeconomic status and the impact on science attitudes and skills. International Journal of STEM Education, 2020, 7, .	2.7	7
158	Writing to Learn and Learning to Write through SWoRD. , 2016, , 243-260.		7
159	Whose ability and growth matter? Gender, mindset and performance in physics. International Journal of STEM Education, 2022, 9, .	2.7	7
160	Introduction to the special issue on computational cognitive modeling. Cognitive Systems Research, 2002, 3, 1-3.	1.9	6
161	How personal, behavioral, and environmental factors predict working in STEMM vs non-STEMM middle-skill careers. International Journal of STEM Education, 2017, 4, 22.	2.7	6
162	How can educational research support practice at scale? Attending to educational designer needs. British Educational Research Journal, 2018, 44, 1084-1100.	1.4	6

#	Article	IF	CITATIONS
163	Participating by activity or by week in MOOCs. Information and Learning Science, 2018, 119, 572-585.	0.8	6
164	Identity Complexes and Science Identity in Early Secondary: Mono-topical or in Combination with Other Topical Identities. Research in Science Education, 2021, 51, 369-390.	1.4	6
165	Reviewer, essay, and reviewing-process characteristics that predict errors in web-based peer review. Computers and Education, 2021, 166, 104146.	5.1	6
166	Coaching that supports teachers' learning to enact ambitious instruction. Instructional Science, 2021, 49, 877-898.	1.1	6
167	What makes students contribute more peer feedback? The role of within-course experience with peer feedback. Assessment and Evaluation in Higher Education, 2022, 47, 972-983.	3.9	6
168	Variation in which key motivational and academic resources relate to academic performance disparities across introductory college courses. International Journal of STEM Education, 2020, 7, .	2.7	6
169	Do experiences of interactional inequality predict lower depth of future student participation in peer review?. Computers in Human Behavior, 2022, 127, 107056.	5.1	6
170	Framework for unpacking students' mindsets in physics by gender. Physical Review Physics Education Research, 2022, 18, .	1.4	6
171	Causality and the categorisation of objects and events. Thinking and Reasoning, 1995, 1, 237-284.	2.1	5
172	Mental arithmetic activates analogic representations of internally generated sums. Neuropsychologia, 2012, 50, 2397-2407.	0.7	5
173	Robust mechanobiological behavior emerges in heterogeneous myosin systems. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8147-E8154.	3.3	5
174	Performance Benefits of Spatially Distributed Versus Stacked Information on Integration Tasks. Applied Cognitive Psychology, 2012, 26, 207-214.	0.9	4
175	The D3 Science-to-Design Methodology: Automated and Cognitive-Based Processes for Discovering, Describing, and Designing Complex Nanomechanical Biosystems. , 2015, , .		4
176	How Do Secondary Level Biology Teachers Make Sense of Using Mathematics in Design-Based Lessons About a Biological Process?. Contemporary Trends and Issues in Science Education, 2016, , 339-371.	0.2	4
177	Using principles of cognitive science to improve science learning in middle school: What works when and for whom?. Applied Cognitive Psychology, 2018, 32, 225-240.	0.9	4
178	Exploring shifts in the characteristics of US government-funded science curriculum materials and their (unintended) consequences. Studies in Science Education, 2018, 54, 1-39.	3.4	4
179	Mind the gap: how a large-scale course re-design in economics reduced performance gaps. Journal of Experimental Education, 2022, 90, 783-796.	1.6	4
180	Perceived relevance of digital badges predicts longitudinal change in program engagement Journal of Educational Psychology, 2020, 112, 1020-1041.	2.1	4

#	Article	IF	CITATIONS
181	Developing Writing Skills Through Students Giving Instructional Explanations. , 2010, , 207-221.		4
182	The importance of frameworks for directing empirical questions: Reply to Goodie and Fantino (2000) Journal of Experimental Psychology: General, 2000, 129, 453-456.	1.5	3
183	The Meaning of "Near―and "Far― The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output. , 2012, , .		3
184	A framework for unpacking cognitive benefits of distributed complex visual displays Journal of Experimental Psychology: Applied, 2014, 20, 260-269.	0.9	3
185	Using mental computation training to improve complex mathematical performance. Instructional Science, 2015, 43, 463-485.	1.1	3
186	Applying math onto mechanisms: mechanistic knowledge is associated with the use of formal mathematical strategies. Cognitive Research: Principles and Implications, 2017, 2, 6.	1.1	3
187	The Impacts of Domain-General vs. Domain-Specific Diagramming Tools on Writing. International Journal of Artificial Intelligence in Education, 2017, 27, 671-693.	3.9	3
188	What Drives Visitor Engagement in Exhibits? The Interaction Between Visitor Activation Profiles and Exhibit Features. Curator, 2019, , .	0.2	3
189	What Should Cognitive Science Look Like? Neither a Tree Nor Physics. Topics in Cognitive Science, 2019, 11, 845-852.	1.1	3
190	Integrating a space for teacher interaction into an educative curriculum: design principles and teachers' use of the iPlan tool. Technology, Pedagogy and Education, 2019, 28, 133-155.	3.3	3
191	Do the Best Design Ideas (Really) Come from Conceptually Distant Sources of Inspiration?. , 2018, , 111-139.		3
192	The Impact of Early Participation in Undergraduate Research Experiences on Multiple Measures of Premed Path Success. Council on Undergraduate Research Quarterly, 2018, 1, 13-18.	0.0	3
193	Cross-cultural similarities in category structure. Thinking and Reasoning, 2004, 10, 273-287.	2.1	2
194	From Uncertainly Exact to Certainly Vague. Psychology of Learning and Motivation - Advances in Research and Theory, 2010, , 227-252.	0.5	2
195	Utilizing Emergent Levels to Facilitate Complex Systems Design: Demonstrated in a Synthetic Biology Domain. , 2013, , .		2
196	Testing the Basis for an Automated Design-by-Analogy Tool Through Comparison to Expert Thinking. , 2013, , .		2
197	Experimental evidence for diagramming benefits in science writing. Instructional Science, 2017, 45, 537-556.	1.1	2
198	Building from In Vivo Research to the Future of Research on Relational Thinking and Learning. Educational Psychology Review, 2017, 29, 97-104.	5.1	2

#	Article	IF	CITATIONS
199	The Art of Research: A Divergent/Convergent Thinking Framework and Opportunities for Science-Based Approaches. , 2018, , 167-186.		2
200	Consequences of curricular adaptation strategies for implementation at scale. Science Education, 2020, 104, 983-1007.	1.8	2
201	Tracking reading strategy utilisation through pupillometry. Australasian Journal of Educational Technology, 2016, 32, .	2.0	2
202	Sources of gender differences in competency beliefs and retention in an introductory <scp>premedical</scp> science course. Journal of Research in Science Teaching, 2022, 59, 695-719.	2.0	2
203	Storytelling as a Tool to Enhance Conceptual Knowledge in Cell Biology. Journal of Microbiology and Biology Education, 2022, 23, .	0.5	2
204	A new metric for assessing group level participation in fluid teams. , 2009, , .		1
205	Physical Design Tools Support and Hinder Innovative Engineering Design. Proceedings of the Human Factors and Ergonomics Society, 2011, 55, 1279-1283.	0.2	1
206	Understanding Innovation: A Study of Perspectives and Perceptions in Engineering. , 2011, , .		1
207	Work in progress: Student-directed learning: An approach to sustainability and engineering education. , 2012, , .		1
208	Design of Complex Nano-Scale Systems Using Multi-Agent Simulations and Structure-Behavior-Function Representations. , 2012, , .		1
209	Development of Graphical User Interfaces to Improve Human Design Proficiency for Complex Multi-Level Biosystems. , 2015, , .		1
210	Who Benefits From a Foundational Logic Course? Effects on Undergraduate Course Performance. Journal of Research on Educational Effectiveness, 2019, 12, 191-214.	0.9	1
211	Why students want to provide feedback to their peers: Drivers of feedback quantity and variation by type of course. Journal of Psychology in Africa, 2021, 31, 336-343.	0.3	1
212	A Design Exploration of Genetically Engineered Myosin Motors. , 2011, , .		1
213	A Tool for Summarizing Students' Changes across Drafts. Lecture Notes in Computer Science, 2014, , 679-682.	1.0	1
214	Introduction to the best of ICCM2004. Cognitive Systems Research, 2005, 6, 1-3.	1.9	0
215	Increasing interest and awareness about teaching in science undergraduates. AIP Conference Proceedings, 2006, , .	0.3	Ο
216	Probing Why Nature may Favor Heterogeneous Myosin Systems through Single Molecule and Systems Level Approaches. Biophysical Journal, 2013, 104, 496a.	0.2	0

#	Article	IF	CITATIONS
217	An investigation of the relationship between K-8 robotics teams' collaborative behaviors and their performance in a robotics tournament. , 2015, , .		0
218	Measuring design innovation for project-based design assessment: considerations of robustness and efficiency. Bitacora Urbano Territorial, 2017, 27, 19-30.	0.1	0
219	Micro-Conflict Coding Scheme. , 0, , 472-482.		0
220	Comparison of Collective Team and Individual Student Peer Feedback on Design. , 2017, , .		0