GaÃ«l Grenouillet

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/8898767/publications.pdf
Version: 2024-02-01

Phylogenetic signal and evolutionary relationships among traits of inland fishes along elevational
and longitudinal gradients. Freshwater Biology, 2022, 67, 912-925.

Reply to: $\hat{a} €^{\sim}$ Flooding is a key driver of the Tonle Sap dai fishery in Cambodiaâ $€^{\text {TM }}$. Scientific Reports, 2021, 11, 3815.

Responses of spawning thermal suitability to climate change and hydropower operation for typical fishes below the Three Gorges Dam. Ecological Indicators, 2021, 121, 107186.

Spatial pattern and determinants of global invasion risk of an invasive species, sharpbelly Hemiculter
$4 \quad \begin{aligned} & \text { Spatial pattern and determinants of global invasion risk of an invasive species, sharpb } \\ & \text { leucisculus (Basilesky, 1855). Science of the Total Environment, 2020, } 711,134661 .\end{aligned}$
8.0

13

5 Comment on â€œForest microclimate dynamics drive plant responses to warmingâ€: Science, 2020, 370, .
$12.6 \quad 6$
$6 \quad$ Fish Community Responses to Human-Induced Stresses in the Lower Mekong Basin. Water
(Switzerland), 2020, 12, 3522.

7 Impact of seasonal hydrological variation on tropical fish assemblages: abrupt shift following an extreme flood event. Ecosphere, 2020, 11, e03303.
$2.2 \quad 14$

8 Species range shifts in response to climate change and human pressure for the world's largest
amphibian. Science of the Total Environment, 2020, 735, 139543.
8.0

19

9 Species better track climate warming in the oceans than on land. Nature Ecology and Evolution, 2020,
4, 1044-1059.

Unlocking biodiversity and conservation studies in highâ€ediversity environments using environmental
DNA (eDNA): A test with Guianese freshwater fishes. Molecular Ecology Resources, 2019, 19, 27-46.
Drainage network position and historical connectivity explain global patterns in freshwater fishesấ ℓ^{TM}
range size. Proceedings of the National Academy of Sciences of the United States of America, 2019, 11 13434-13439.

12 Spatial patterns and determinants of trait dispersion in freshwater fish assemblages across Europe.
Global Ecology and Biogeography, 2019, 28, 826-838.

Spatial mismatch in morphological, ecological and phylogenetic diversity, in historical and
contemporary European freshwater fish faunas. Ecography, 2018, 41, 1665-1674.

Interactions between species attributes explain population dynamics in stream fishes under changing climate. Ecosphere, 2018, 9, e02061.

Concomitant impacts of climate change, fragmentation and nonâ€native species have led to
reorganization of fish communities since the 1980s. Global Ecology and Biogeography, 2018, 27, 213-222.

Fish assemblage responses to flow seasonality and predictability in a tropical flood pulse system.
Ecosphere, 2018, 9, e02366.

Nonâ€native species led to marked shifts in functional diversity of the world freshwater fish faunas.
$17 \quad \begin{aligned} & \text { Nonânative species led to marked shif } \\ & \text { Ecology Letters, 2018, 21, 1649-1659. }\end{aligned}$
6.4

74

Community disassembly under global change: Evidence in favor of the stressâ€dominance hypothesis.
Clobal Change Biology, 2018, 24, 4417-4427.

Spatial and temporal variation in fish community structure and diversity in the largest tropical
floodâ€pulse system of Southâ€East Asia. Ecology of Freshwater Fish, 2018, 27, 1087-1100.

Evidence of indiscriminate fishing effects in one of the worldấ ${ }^{T M}$ s largest inland fisheries. Scientific Reports, 2018, 8, 8947.

Largeâ€scale patterns of fish diversity and assemblage structure in the longest tropical river in Asia. Ecology of Freshwater Fish, 2017, 26, 575-585.

Indirect effect of temperature on fish population abundances through phenological changes. PLoS ONE, 2017, 12, e0175735.

Climate interacts with anthropogenic drivers to determine extirpation dynamics. Ecography, 2016, 39,
1008-1016.

Environmental determinants of fish community structure in gravel pit lakes. Ecology of Freshwater
Fish, 2016, 25, 412-421.

25 Increased taxonomic and functional similarity does not increase the trophic similarity of
$25 \quad$ Increased taxonomic and functional similarity does not increase the trophic similarity of
5.8

19

Taxonomic and functional diversity patterns reveal different processes shaping European and
Amazonian stream fish assemblages. Journal of Biogeography, 2016, 43, 1832-1843.
3.0

38

Toward an ecological understanding of a flood-pulse system lake in a tropical ecosystem: Food web
$27 \quad$ structure and ecosystem health. Ecological Modelling, 2016, 323, 1-11.

PCR-free shotgun sequencing of the stone loach mitochondrial genome (<i>Barbatula barbatula</i>).
Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 4211-4212.
0.7

6
29 Evidence of Water Quality Degradation in Lower Mekong Basin Revealed by Self-Organizing Map. PLoS
ONE, 2016, 11, e0145527. 2
2.5

84Distribution shifts of freshwater fish under a variable climate: comparing climatic, bioclimatic and
4.1

Measurements of spatial population synchrony: influence of time series transformations. Oecologia,
2.0

12
2015, 179, 15-28.

The iterative ensemble modelling approach increases the accuracy of fish distribution models. Ecography, 2015, 38, 213-220.

How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecology and Biogeography, 2015, 24, 728-740.
5.8

338

Phenotypic variation as an indicator of pesticide stress in gudgeon: Accounting for confounding factors in the wild. Science of the Total Environment, 2015, 538, 733-742.

Mosquitofish (<i>Gambusia holbrooki</i>). Freshwater Science, 2015, 34, 965-974.

Environmental Safety, 2015, 112, 15-21.
37 Drivers of freshwater fish colonisations and extirpations under climate change. Ecography, 2015, 38,
$510-519$.

Regional <i>vs</i> local drivers of phylogenetic and species diversity in stream fish communities.
2.4

43 Freshwater Biology, 2014, 59, 450-462.
5.8

127
39 Functional homogenization exceeds taxonomic homogenization among <scp>E</scp> uropean fish assemblages. Global Ecology and Biogeography, 2014, 23, 1450-1460.

Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nature Communications, 2014, 5, 5023.

41 Illuminating geographical patterns in species' range shifts. Global Change Biology, 2014, 20, 3080-3091.
9.5

40

Global imprint of historical connectivity on freshwater fish biodiversity. Ecology Letters, 2014, 17,
1130-1140.
6.4

121

43 Species contribute differently to the taxonomic, functional, and phylogenetic alpha and beta diversity
of freshwater fish communities. Diversity and Distributions, 2014, 20, 1235-1244.
4.1

55

44 Spatial synchrony in stream fish populations: influence of species traits. Ecography, 2014, 37, 960-968.
4.5

25
A scenario for impacts of water availability loss due to climate change on riverine fish extinction

47	Toward a loss of functional diversity in stream fish assemblages under climate change. Global Change Biology, 2013, 19, 387-400.	9.5
Spatial range shape drives the grain size effects in species distribution models. Ecography, 2013, 36, $778-787$.	4.5	17

49 Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography, 2013,
36, 1236-1246.

Decomposing functional $\hat{\imath}$-diversity reveals that low functional $\hat{\imath}$-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography, 2013, 22, 671-681.

Species distribution modelling and imperfect detection: comparing occupancy versus consensus

Influence of small-scale gold mining on French Guiana streams: Are diatom assemblages valid
disturbance sensors?. Ecological Indicators, 2012, 14, 100-106.

Evidence that elevated water temperature affects the reproductive physiology of the European bullhead Cottus gobio. Fish Physiology and Biochemistry, 2012, 38, 389-399.

Dealing with Noisy Absences to Optimize Species Distribution Models: An Iterative Ensemble Modelling
Approach. PLoS ONE, 2012, 7, e49508.

Host characteristics and environmental factors differentially drive the burden and pathogenicity of an ectoparasite: a multilevel causal analysis. Journal of Animal Ecology, 2011, 80, 657-667.

Ensemble modelling of species distribution: the effects of geographical and environmental ranges.
Ecography, 2011, 34, 9-17.

Small-scale gold mining erodes fish assemblage structure in small neotropical streams. Biodiversity and Conservation, 2011, 20, 1013-1026.

Effects of an anti-salt intrusion dam on tropical fish assemblages. Marine and Freshwater Research,
2010, 61, 288.

Uncertainty in ensemble forecasting of species distribution. Global Change Biology, 2010, 16, 1145-1157.
9.5

537

63 Nonấnative species disrupt the worldwide patterns of freshwater fish body size: implications for
Bergmannâ $\epsilon^{\text {TM }}$ s rule. Ecology Letters, 2010, 13, 421-431.

Contrasted impacts of climate change on stream fish assemblages along an environmental gradient.
Diversity and Distributions, 2009, 15, 613-626.

Modeling the impact of landscape types on the distribution of stream fish species. Canadian Journal of
Fisheries and Aquatic Sciences, 2009, 66, 484-495.

Climate Change and the Future of Freshwater Biodiversity in Europe: A Primer for Policy-Makers.
Freshwater Reviews: A Journal of the Freshwater Biological Association, 2009, 2, 103-130.

Climate change hastens the turnover of stream fish assemblages. Clobal Change Biology, 2008, 14,
2232-2248.

Spatio-temporal patterns of fish assemblages in coastal West African rivers: a self-organizing map approach. Aquatic Living Resources, 2006, 19, 361-370.

POPULATION DYNAMICS OF MOTTLED SCULPIN (PISCES) IN A VARIABLE ENVIRONMENT: INFORMATION
THEORETIC APPROACHES. Ecological Monographs, 2006, 76, 217-234.
5.4

Stream fish assemblages and basin land cover in a river network. Science of the Total Environment,
2006, 365, 140-153.

Abundance and species richness as a function of food resources and vegetation structure: juvenile
fish assemblages in rivers. Ecography, 2002, 25, 641-650.
4.5

98

