Gaël Grenouillet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8898767/publications.pdf

Version: 2024-02-01

71 papers

5,221 citations

35 h-index 91884 69 g-index

71 all docs

71 docs citations

71 times ranked

7357 citing authors

#	Article	IF	Citations
1	Uncertainty in ensemble forecasting of species distribution. Global Change Biology, 2010, 16, 1145-1157.	9.5	537
2	Species better track climate warming in the oceans than on land. Nature Ecology and Evolution, 2020, 4, 1044-1059.	7.8	359
3	How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecology and Biogeography, 2015, 24, 728-740.	5.8	338
4	Decomposing functional \hat{l}^2 -diversity reveals that low functional \hat{l}^2 -diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography, 2013, 22, 671-681.	5.8	318
5	Climateâ€induced changes in the distribution of freshwater fish: observed and predicted trends. Freshwater Biology, 2013, 58, 625-639.	2.4	298
6	Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography, 2011, 34, 9-17.	4. 5	285
7	Climate change hastens the turnover of stream fish assemblages. Global Change Biology, 2008, 14, 2232-2248.	9.5	226
8	Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography, 2013, 36, 1236-1246.	4.5	196
9	Toward a loss of functional diversity in stream fish assemblages under climate change. Global Change Biology, 2013, 19, 387-400.	9.5	160
10	Unlocking biodiversity and conservation studies in highâ€diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes. Molecular Ecology Resources, 2019, 19, 27-46.	4.8	135
11	Functional homogenization exceeds taxonomic homogenization among <scp>E</scp> uropean fish assemblages. Global Ecology and Biogeography, 2014, 23, 1450-1460.	5 . 8	127
12	Global imprint of historical connectivity on freshwater fish biodiversity. Ecology Letters, 2014, 17, 1130-1140.	6.4	121
13	Contrasted impacts of climate change on stream fish assemblages along an environmental gradient. Diversity and Distributions, 2009, 15, 613-626.	4.1	103
14	Abundance and species richness as a function of food resources and vegetation structure: juvenile fish assemblages in rivers. Ecography, 2002, 25, 641-650.	4.5	98
15	A scenario for impacts of water availability loss due to climate change on riverine fish extinction rates. Journal of Applied Ecology, 2013, 50, 1105-1115.	4.0	90
16	Nonâ€native species disrupt the worldwide patterns of freshwater fish body size: implications for Bergmann's rule. Ecology Letters, 2010, 13, 421-431.	6.4	88
17	Evidence of indiscriminate fishing effects in one of the world's largest inland fisheries. Scientific Reports, 2018, 8, 8947.	3.3	84
18	Evidence of Water Quality Degradation in Lower Mekong Basin Revealed by Self-Organizing Map. PLoS ONE, 2016, 11, e0145527.	2.5	84

#	Article	IF	Citations
19	Climate Change and the Future of Freshwater Biodiversity in Europe: A Primer for Policy-Makers. Freshwater Reviews: A Journal of the Freshwater Biological Association, 2009, 2, 103-130.	1.0	80
20	Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nature Communications, 2014, 5, 5023.	12.8	79
21	Nonâ€native species led to marked shifts in functional diversity of the world freshwater fish faunas. Ecology Letters, 2018, 21, 1649-1659.	6.4	74
22	Drainage network position and historical connectivity explain global patterns in freshwater fishes' range size. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13434-13439.	7.1	69
23	POPULATION DYNAMICS OF MOTTLED SCULPIN (PISCES) IN A VARIABLE ENVIRONMENT: INFORMATION THEORETIC APPROACHES. Ecological Monographs, 2006, 76, 217-234.	5.4	63
24	Species distribution modelling and imperfect detection: comparing occupancy versus consensus methods. Diversity and Distributions, 2013, 19, 996-1007.	4.1	58
25	Concomitant impacts of climate change, fragmentation and nonâ€native species have led to reorganization of fish communities since the 1980s. Global Ecology and Biogeography, 2018, 27, 213-222.	5.8	56
26	Small-scale gold mining erodes fish assemblage structure in small neotropical streams. Biodiversity and Conservation, 2011, 20, 1013-1026.	2.6	55
27	Species contribute differently to the taxonomic, functional, and phylogenetic alpha and beta diversity of freshwater fish communities. Diversity and Distributions, 2014, 20, 1235-1244.	4.1	55
28	Host characteristics and environmental factors differentially drive the burden and pathogenicity of an ectoparasite: a multilevel causal analysis. Journal of Animal Ecology, 2011, 80, 657-667.	2.8	53
29	Stream fish assemblages and basin land cover in a river network. Science of the Total Environment, 2006, 365, 140-153.	8.0	51
30	Evidence that elevated water temperature affects the reproductive physiology of the European bullhead Cottus gobio. Fish Physiology and Biochemistry, 2012, 38, 389-399.	2.3	49
31	Drivers of freshwater fish colonisations and extirpations under climate change. Ecography, 2015, 38, 510-519.	4.5	44
32	Regional <i>vs</i> local drivers of phylogenetic and species diversity in stream fish communities. Freshwater Biology, 2014, 59, 450-462.	2.4	43
33	Distribution shifts of freshwater fish under a variable climate: comparing climatic, bioclimatic and biotic velocities. Diversity and Distributions, 2015, 21, 1014-1026.	4.1	41
34	Illuminating geographical patterns in species' range shifts. Global Change Biology, 2014, 20, 3080-3091.	9.5	40
35	Taxonomic and functional diversity patterns reveal different processes shaping European and Amazonian stream fish assemblages. Journal of Biogeography, 2016, 43, 1832-1843.	3.0	38
36	Influence of small-scale gold mining on French Guiana streams: Are diatom assemblages valid disturbance sensors?. Ecological Indicators, 2012, 14, 100-106.	6.3	37

#	Article	IF	CITATIONS
37	Environmental determinants of fish community structure in gravel pit lakes. Ecology of Freshwater Fish, 2016, 25, 412-421.	1.4	34
38	Largeâ€scale patterns of fish diversity and assemblage structure in the longest tropical river in Asia. Ecology of Freshwater Fish, 2017, 26, 575-585.	1.4	34
39	Indirect effect of temperature on fish population abundances through phenological changes. PLoS ONE, 2017, 12, e0175735.	2.5	34
40	Toward an ecological understanding of a flood-pulse system lake in a tropical ecosystem: Food web structure and ecosystem health. Ecological Modelling, 2016, 323, 1-11.	2.5	29
41	Spatio-temporal patterns of fish assemblages in coastal West African rivers: a self-organizing map approach. Aquatic Living Resources, 2006, 19, 361-370.	1.2	25
42	Spatial synchrony in stream fish populations: influence of species traits. Ecography, 2014, 37, 960-968.	4.5	25
43	Natural abiotic factors more than anthropogenic perturbation shape the invasion of Eastern Mosquitofish (<i>Gambusia holbrooki</i>). Freshwater Science, 2015, 34, 965-974.	1.8	25
44	Fish assemblage responses to flow seasonality and predictability in a tropical flood pulse system. Ecosphere, 2018, 9, e02366.	2.2	24
45	Spatial mismatch in morphological, ecological and phylogenetic diversity, in historical and contemporary European freshwater fish faunas. Ecography, 2018, 41, 1665-1674.	4.5	23
46	Intra―and interspecific differences in nutrient recycling by European freshwater fish. Freshwater Biology, 2012, 57, 2330-2341.	2.4	21
47	Responses of spawning thermal suitability to climate change and hydropower operation for typical fishes below the Three Gorges Dam. Ecological Indicators, 2021, 121, 107186.	6.3	21
48	Behavioral response of juvenile rainbow trout exposed to an herbicide mixture. Ecotoxicology and Environmental Safety, 2015, 112, 15-21.	6.0	20
49	Increased taxonomic and functional similarity does not increase the trophic similarity of communities. Global Ecology and Biogeography, 2016, 25, 46-54.	5.8	19
50	Community disassembly under global change: Evidence in favor of the stressâ€dominance hypothesis. Global Change Biology, 2018, 24, 4417-4427.	9.5	19
51	Species range shifts in response to climate change and human pressure for the world's largest amphibian. Science of the Total Environment, 2020, 735, 139543.	8.0	19
52	Spatial range shape drives the grain size effects in species distribution models. Ecography, 2013, 36, 778-787.	4.5	17
53	Spatial and temporal variation in fish community structure and diversity in the largest tropical floodâ€pulse system of Southâ€East Asia. Ecology of Freshwater Fish, 2018, 27, 1087-1100.	1.4	17
54	Spatial patterns and determinants of trait dispersion in freshwater fish assemblages across Europe. Global Ecology and Biogeography, 2019, 28, 826-838.	5.8	16

#	Article	IF	Citations
55	Combining genetic and demographic data for prioritizing conservation actions: insights from a threatened fish species. Ecology and Evolution, 2013, 3, 2696-2710.	1.9	14
56	Impact of seasonal hydrological variation on tropical fish assemblages: abrupt shift following an extreme flood event. Ecosphere, 2020, 11, e03303.	2.2	14
57	Dealing with Noisy Absences to Optimize Species Distribution Models: An Iterative Ensemble Modelling Approach. PLoS ONE, 2012, 7, e49508.	2.5	14
58	Spatial pattern and determinants of global invasion risk of an invasive species, sharpbelly Hemiculter leucisculus (Basilesky, 1855). Science of the Total Environment, 2020, 711, 134661.	8.0	13
59	Measurements of spatial population synchrony: influence of time series transformations. Oecologia, 2015, 179, 15-28.	2.0	12
60	Climate interacts with anthropogenic drivers to determine extirpation dynamics. Ecography, 2016, 39, 1008-1016.	4.5	12
61	Interactions between species attributes explain population dynamics in stream fishes under changing climate. Ecosphere, 2018, 9, e02061.	2.2	12
62	The iterative ensemble modelling approach increases the accuracy of fish distribution models. Ecography, 2015, 38, 213-220.	4.5	10
63	Phenotypic variation as an indicator of pesticide stress in gudgeon: Accounting for confounding factors in the wild. Science of the Total Environment, 2015, 538, 733-742.	8.0	10
64	A New Freshwater Biodiversity Indicator Based on Fish Community Assemblages. PLoS ONE, 2013, 8, e80968.	2.5	10
65	Modeling the impact of landscape types on the distribution of stream fish species. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 484-495.	1.4	9
66	Fish Community Responses to Human-Induced Stresses in the Lower Mekong Basin. Water (Switzerland), 2020, 12, 3522.	2.7	9
67	Effects of an anti-salt intrusion dam on tropical fish assemblages. Marine and Freshwater Research, 2010, 61, 288.	1.3	7
68	PCR-free shotgun sequencing of the stone loach mitochondrial genome (<i>Barbatula barbatula</i>). Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 4211-4212.	0.7	6
69	Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	12.6	6
70	Phylogenetic signal and evolutionary relationships among traits of inland fishes along elevational and longitudinal gradients. Freshwater Biology, 2022, 67, 912-925.	2.4	6
71	Reply to:  Flooding is a key driver of the Tonle Sap dai fishery in Cambodia'. Scientific Reports, 2021, 11, 3815.	3.3	3