Bunyamin Tar'an

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8896369/publications.pdf Version: 2024-02-01

RUNYAMIN TAD'AN

#	Article	IF	CITATIONS
1	CRISPR/Cas9 gene editing in legume crops: Opportunities and challenges. , 2021, 3, e96.		49
2	Standardization of Aquafaba Production and Application in Vegan Mayonnaise Analogs. Foods, 2021, 10, 1978.	4.3	28
3	Identification of heat responsive genes in pea stipules and anthers through transcriptional profiling. PLoS ONE, 2021, 16, e0251167.	2.5	4
4	A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature, 2021, 599, 622-627.	27.8	106
5	Development of ABA Antagonists to Overcome ABA- and Low Temperature-Induced Inhibition of Seed Germination in Canola, Lentil, and Soybean. Journal of Plant Growth Regulation, 2020, 39, 1403-1413.	5.1	9
6	Folate profile diversity and associated SNPs using genome wide association study in pea. Euphytica, 2020, 216, 1.	1.2	16
7	Thermal processing methods differentially affect the protein quality of Chickpea (<i>Cicer) Tj ETQq1 1 0.784314</i>	rgBT /Over 3.4	lock 10 Tf 5 26
8	Integrating genomics for chickpea improvement: achievements and opportunities. Theoretical and Applied Genetics, 2020, 133, 1703-1720.	3.6	82
9	<scp>QTL</scp> sequencing strategy to map genomic regions associated with resistance to ascochyta blight in chickpea. Plant Biotechnology Journal, 2019, 17, 275-288.	8.3	75
10	A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019, 51, 1411-1422.	21.4	363
11	Iron Fortification and Bioavailability of Chickpea (Cicer arietinum L.) Seeds and Flour. Nutrients, 2019, 11, 2240.	4.1	13
12	Development of a Sequence-Based Reference Physical Map of Pea (Pisum sativum L.). Frontiers in Plant Science, 2019, 10, 323.	3.6	13
13	Genome-wide SNP discovery for development of high-density genetic map and QTL mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.). Theoretical and Applied Genetics, 2019, 132, 1861-1872.	3.6	35
14	Mapping Quantitative Trait Loci for Carotenoid Concentration in Three F ₂ Populations of Chickpea. Plant Genome, 2019, 12, 1-12.	2.8	13
15	Genome-Wide Association Mapping for Agronomic and Seed Quality Traits of Field Pea (Pisum sativum) Tj ETQq1	1.0,78431 3.6	.4 _s rgBT /Ove
16	Sensory Acceptability of Ironâ€Fortified Red Lentil (<i>Lens culinaris</i> Medik.) Dal. Journal of Food Science, 2018, 83, 804-813.	3.1	11
17	Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nature Communications, 2018, 9, 649.	12.8	142
18	Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungi and non-mycorrhizal fungal endophytes. Canadian Journal of Microbiology, 2018, 64, 265-275.	1.7	20

BUNYAMIN TAR'AN

#	Article	IF	CITATIONS
19	Determine effect of pressure heating on carbohydrate related molecular structures in association with carbohydrate metabolic profiles of cool-climate chickpeas using Globar spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 8-18.	3.9	6
20	Construction of high-density linkage maps for mapping quantitative trait loci for multiple traits in field pea (Pisum sativum L.). BMC Plant Biology, 2018, 18, 172.	3.6	59
21	CDC Canary yellow field pea. Canadian Journal of Plant Science, 2017, , .	0.9	0
22	CDC Spruce green field pea. Canadian Journal of Plant Science, 2017, , .	0.9	0
23	The Chickpea <i>Early Flowering 1</i> (<i>Efl1</i>) Locus Is an Ortholog of Arabidopsis <i>ELF3</i> . Plant Physiology, 2017, 175, 802-815.	4.8	54
24	Classical Genetics and Gene Mapping. Compendium of Plant Genomes, 2017, , 69-81.	0.5	1
25	Population structure and association mapping of traits related to reproductive development in field pea. Euphytica, 2017, 213, 1.	1.2	12
26	Pea Phenology: Crop Potential in a Warming Environment. Crop Science, 2017, 57, 1540-1551.	1.8	32
27	Fine Mapping of QTLs for Ascochyta Blight Resistance in Pea Using Heterogeneous Inbred Families. Frontiers in Plant Science, 2017, 8, 765.	3.6	35
28	Genetic Analysis of NBS-LRR Gene Family in Chickpea and Their Expression Profiles in Response to Ascochyta Blight Infection. Frontiers in Plant Science, 2017, 8, 838.	3.6	60
29	Iron Fortification of Lentil (Lens culinaris Medik.) to Address Iron Deficiency. Nutrients, 2017, 9, 863.	4.1	21
30	Towards Zinc Biofortification in Chickpea: Performance of Chickpea Cultivars in Response to Soil Zinc Application. Agronomy, 2017, 7, 11.	3.0	14
31	CDC Athabasca yellow field pea. Canadian Journal of Plant Science, 2017, , .	0.9	0
32	Distinct Subgroups of <i>Cicer echinospermum</i> Are Associated with Hybrid Sterility and Breakdown in Interspecific Crosses with Cultivated Chickpea. Crop Science, 2017, 57, 3101-3111.	1.8	33
33	Determination of Photoperiod-Sensitive Phase in Chickpea (Cicer arietinum L.). Frontiers in Plant Science, 2016, 7, 478.	3.6	19
34	Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.). Frontiers in Plant Science, 2016, 7, 1802.	3.6	69
35	Identification and Expression Analysis of Candidate Genes Involved in Carotenoid Biosynthesis in Chickpea Seeds. Frontiers in Plant Science, 2016, 7, 1867.	3.6	26
36	Identification of QTLs Associated with Improved Resistance to Ascochyta Blight in an Interspecific Pea Recombinant Inbred Line Population. Crop Science, 2016, 56, 2926-2939.	1.8	29

BUNYAMIN TAR'AN

#	Article	IF	CITATIONS
37	Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genomics, 2016, 17, 239.	2.8	38
38	Response of conventional and imidazolinone-resistant chickpea (<i>Cicer arietinum</i> L.) cultivars to imazamox and/or imazethapyr applied post-emergence. Canadian Journal of Plant Science, 2016, 96, 48-58.	0.9	3
39	QTL mapping of early flowering and resistance to ascochyta blight in chickpea. Genome, 2016, 59, 413-425.	2.0	41
40	Response of Chickpea Cultivars to Imidazolinone Herbicide Applied at Different Growth Stages. Weed Technology, 2016, 30, 664-676.	0.9	7
41	Effect of Temperature and Photoperiod on Time to Flowering in Chickpea. Crop Science, 2016, 56, 200-208.	1.8	12
42	Flowering response of diverse chickpea (Cicer arietinum L.) accessions to photoperiod. Genetic Resources and Crop Evolution, 2016, 63, 1161-1172.	1.6	3
43	Fine mapping for double podding gene in chickpea. Theoretical and Applied Genetics, 2016, 129, 77-86.	3.6	21
44	Effect of prohexadione calcium on vegetative growth, seed maturity and seed yield of the Kabuli chickpea cultivar CDC Frontier. Canadian Journal of Plant Science, 2015, 95, 571-578.	0.9	9
45	Response of Snap Bean Cultivars to Rhizobium Inoculation under Dryland Agriculture in Ethiopia. Agronomy, 2015, 5, 291-308.	3.0	30
46	Mapping Seed Phytic Acid Concentration and Iron Bioavailability in a Pea Recombinant Inbred Line Population. Crop Science, 2015, 55, 828-836.	1.8	23
47	SNP variation within genes associated with amylose, total starch and crude protein concentration in field pea. Euphytica, 2015, 206, 459-471.	1.2	24
48	Genetic diversity of nutritionally important carotenoids in 94 pea and 121 chickpea accessions. Journal of Food Composition and Analysis, 2015, 43, 49-60.	3.9	45
49	Genotype-Specific Variation in the Structure of Root Fungal Communities Is Related to Chickpea Plant Productivity. Applied and Environmental Microbiology, 2015, 81, 2368-2377.	3.1	39
50	Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Molecular Breeding, 2015, 35, 1.	2.1	68
51	Genetic diversity of folate profiles in seeds of common bean, lentil, chickpea and pea. Journal of Food Composition and Analysis, 2015, 42, 134-140.	3.9	77
52	Allele diversity analysis to identify SNPs associated with ascochyta blight resistance in pea. Euphytica, 2015, 202, 189-197.	1.2	24
53	Effect of Cultivar and Environment on Carotenoid Profile of Pea and Chickpea. Crop Science, 2014, 54, 2225-2235.	1.8	23
54	Gene-based SNP discovery and genetic mapping in pea. Theoretical and Applied Genetics, 2014, 127, 2225-2241.	3.6	74

#	Article	IF	CITATIONS
55	Analysis of acetohydroxyacid synthase1 gene in chickpea conferring resistance to imazamox herbicide. Genome, 2014, 57, 593-600.	2.0	6
56	Genetic diversity and association mapping of iron and zinc concentrations in chickpea (<i>Cicer) Tj ETQq0 0 0 r</i>	gBT_/Overl	ock 10 Tf 50
57	Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics, 2014, 15, 708.	2.8	98
58	A chromosomal genomics approach to assess and validate the <i>desi</i> and <i>kabuli</i> draft chickpea genome assemblies. Plant Biotechnology Journal, 2014, 12, 778-786.	8.3	54
59	Genetic characterization of the acetohydroxyacid synthase (AHAS) gene responsible for resistance to imidazolinone in chickpea (Cicer arietinum L.). Theoretical and Applied Genetics, 2014, 127, 1583-1591.	3.6	18
60	Comprehensive Transcriptome Assembly of Chickpea (Cicer arietinum L.) Using Sanger and Next Generation Sequencing Platforms: Development and Applications. PLoS ONE, 2014, 9, e86039.	2.5	87
61	Mineral Micronutrient Content of Cultivars of Field Pea, Chickpea, Common Bean, and Lentil Grown in Saskatchewan, Canada. Crop Science, 2014, 54, 1698-1708.	1.8	117
62	CDC Raezer green field pea. Canadian Journal of Plant Science, 2014, 94, 1535-1537.	0.9	4
63	CDC Limerick green field pea. Canadian Journal of Plant Science, 2014, 94, 1547-1549.	0.9	7
64	CDC Amarillo yellow field pea. Canadian Journal of Plant Science, 2014, 94, 1539-1541.	0.9	10
65	CDC Greenwater green field pea. Canadian Journal of Plant Science, 2014, 94, 1551-1553.	0.9	0
66	CDC Saffron yellow field pea. Canadian Journal of Plant Science, 2014, 94, 1543-1545.	0.9	1
67	Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 2013, 31, 240-246.	17.5	1,049
68	Fast track genetic improvement of ascochyta blight resistance and double podding in chickpea by marker-assisted backcrossing. Theoretical and Applied Genetics, 2013, 126, 1639-1647.	3.6	36
69	Response of chickpea cultivars to pre- and post-emergence herbicide applications. Canadian Journal of Plant Science, 2013, 93, 279-286.	0.9	16
70	Characterization of 169 diverse pea germplasm accessions for agronomic performance, Mycosphaerella blight resistance and nutritional profile. Genetic Resources and Crop Evolution, 2013, 60, 747-761.	1.6	30
71	Identification of Mycosphaerella Blight Resistance in Wild <i>Pisum</i> Species for Use in Pea Breeding. Crop Science, 2012, 52, 2462-2468.	1.8	23
72	CDC Tetris green field pea. Canadian Journal of Plant Science, 2012, 92, 217-219.	0.9	0

#	Article	IF	CITATIONS
73	CDC Pluto small green field pea. Canadian Journal of Plant Science, 2012, 92, 215-216.	0.9	2
74	CDC Horizon forage pea. Canadian Journal of Plant Science, 2012, 92, 207-209.	0.9	2
75	CDC Treasure yellow field pea. Canadian Journal of Plant Science, 2012, 92, 211-213.	0.9	1

 $_{76}$ Genetic control and identification of QTLs associated with visual quality traits of field pea (<i>Pisum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{20}^{20}$

77	Mapping QTL Associated with Traits Affecting Grain Yield in Chickpea (<i>Cicer arietinum</i> L.) under Terminal Drought Stress. Crop Science, 2011, 51, 450-463.	1.8	84
78	CDC Hornet yellow field pea. Canadian Journal of Plant Science, 2011, 91, 947-949.	0.9	0
79	CDC Orion kabuli chickpea. Canadian Journal of Plant Science, 2011, 91, 355-356.	0.9	7
80	Sources of resistance to ascochyta blight in wild species of lentil (Lens culinaris Medik.). Genetic Resources and Crop Evolution, 2010, 57, 1053-1063.	1.6	53
81	Variation in chickpea germplasm for tolerance to imazethapyr and imazamox herbicides. Canadian Journal of Plant Science, 2010, 90, 139-142.	0.9	24

628 Genetic control and QTL analysis of cotyledon bleaching resistance in green field pea (Pisum sativum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

83	Genotype and growing environment influence chickpea (<i>Cicer arietinum</i> L.) seed composition. Journal of the Science of Food and Agriculture, 2009, 89, 2052-2063.	3.5	49
----	--	-----	----

64 Genetic analyses and conservation of QTL for ascochyta blight resistance in chickpea (Cicer arietinum) Tj ETQq0 0 9.781 /Overlock 10 T

85	Improved sources of resistance to ascochyta blight in chickpea. Canadian Journal of Plant Science, 2009, 89, 107-118.	0.9	17
86	CDC Luna kabuli chickpea. Canadian Journal of Plant Science, 2009, 89, 517-518.	0.9	3
87	CDC Vanguard desi chickpea. Canadian Journal of Plant Science, 2009, 89, 519-520.	0.9	1
88	CDC Corinne desi chickpea. Canadian Journal of Plant Science, 2009, 89, 515-516.	0.9	5
89	CDC Tucker and CDC Leroy forage pea cultivars. Canadian Journal of Plant Science, 2009, 89, 661-663.	0.9	8
90	The performance of dry bean cultivars with and without common bacterial blight resistance in field studies across Canada. Canadian Journal of Plant Science, 2009, 89, 405-410.	0.9	20

BUNYAMIN TAR'AN

#	Article	IF	CITATIONS
91	Construction of an Intraspecific Linkage Map and QTL Analysis for Earliness and Plant Height in Lentil. Crop Science, 2008, 48, 2254-2264.	1.8	74
92	CDC Prosper field pea. Canadian Journal of Plant Science, 2008, 88, 1097-1098.	0.9	0
93	CDC Patrick field pea. Canadian Journal of Plant Science, 2008, 88, 1095-1096.	0.9	0
94	CDC Meadow field pea. Canadian Journal of Plant Science, 2007, 87, 909-910.	0.9	20
95	CDC Centennial field pea. Canadian Journal of Plant Science, 2007, 87, 907-908.	0.9	5
96	Selection for Lodging Resistance in Early Generations of Field Pea by Molecular Markers. Crop Science, 2006, 46, 321-329.	1.8	24
97	Sources of Resistance to Anthracnose (Colletotrichum truncatum) in Wild Lens Species. Genetic Resources and Crop Evolution, 2006, 53, 111-119.	1.6	69
98	A quantitative-trait locus for resistance to ascochyta blight [<i>Ascochyta lentis</i>] maps close to a gene for resistance to anthracnose [<i>Colletotrichum truncatum</i>] in lentil. Canadian Journal of Plant Pathology, 2006, 28, 588-595.	1.4	37
99	Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.). Euphytica, 2004, 136, 297-306.	1.2	70
100	Title is missing!. Euphytica, 2003, 130, 423-432.	1.2	14
101	Using molecular markers to pyramid genes for resistance to ascochyta blight and anthracnose in lentil (Lens culinarisMedik). Euphytica, 2003, 134, 223-230.	1.2	61
102	Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus). Theoretical and Applied Genetics, 2003, 106, 428-434.	3.6	71
103	Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theoretical and Applied Genetics, 2003, 107, 1482-1491.	3.6	136
104	Genetic Mapping of Agronomic Traits in Common Bean. Crop Science, 2002, 42, 544-556.	1.8	100
105	Genetic Mapping of Agronomic Traits in Common Bean. Crop Science, 2002, 42, 544.	1.8	69
106	Stability of the association of molecular markers with common bacterial blight resistance in common bean (Phascolus vulgaris L.). Plant Breeding, 1998, 117, 553-558.	1.9	15
107	Inheritance of Somatic Embryogenesis in Orchardgrass. Crop Science, 1997, 37, 1497-1502.	1.8	4
108	CDC Spectrum yellow field pea. Canadian Journal of Plant Science, 0, , .	0.9	1

7

#	Article	IF	CITATIONS
109	CDC Inca yellow field pea. Canadian Journal of Plant Science, 0, , .	0.9	3
110	CDC Forest green field pea. Canadian Journal of Plant Science, 0, , .	0.9	0