
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8896003/publications.pdf Version: 2024-02-01

ΜΙΛΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Graphene-based smart materials. Nature Reviews Materials, 2017, 2, .	48.7	569
2	Polymer-Derived Heteroatom-Doped Porous Carbon Materials. Chemical Reviews, 2020, 120, 9363-9419.	47.7	492
3	Grapheneâ€Based Materials for Lithiumâ€lon Hybrid Supercapacitors. Advanced Materials, 2015, 27, 5296-5308.	21.0	424
4	Reduced Graphene Oxide Membranes for Ultrafast Organic Solvent Nanofiltration. Advanced Materials, 2016, 28, 8669-8674.	21.0	349
5	A Flexible UV–Vis–NIR Photodetector based on a Perovskite/Conjugatedâ€Polymer Composite. Advanced Materials, 2016, 28, 5969-5974.	21.0	329
6	Graphene-Based Membranes for Molecular Separation. Journal of Physical Chemistry Letters, 2015, 6, 2806-2815.	4.6	316
7	A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. Journal of Materials Chemistry A, 2015, 3, 6921-6928.	10.3	291
8	Ultrahigh onductivity Polymer Hydrogels with Arbitrary Structures. Advanced Materials, 2017, 29, 1700974.	21.0	290
9	Highly Narrowband Photomultiplication Type Organic Photodetectors. Nano Letters, 2017, 17, 1995-2002.	9.1	278
10	Alginate hydrogel dressings for advanced wound management. International Journal of Biological Macromolecules, 2020, 162, 1414-1428.	7.5	257
11	Asymmetrical Ladderâ€Type Donorâ€Induced Polar Small Molecule Acceptor to Promote Fill Factors Approaching 77% for Highâ€Performance Nonfullerene Polymer Solar Cells. Advanced Materials, 2018, 30, e1800052.	21.0	252
12	Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chemical Science, 2016, 7, 1874-1881.	7.4	251
13	Hydrogen Evolution Reaction in Alkaline Media: Alpha- or Beta-Nickel Hydroxide on the Surface of Platinum?. ACS Energy Letters, 2018, 3, 237-244.	17.4	230
14	Ternary nonfullerene polymer solar cells with efficiency >13.7% by integrating the advantages of the materials and two binary cells. Energy and Environmental Science, 2018, 11, 2134-2141.	30.8	223
15	Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%. Energy and Environmental Science, 2018, 11, 841-849.	30.8	210
16	Efficient Ternary Polymer Solar Cells with Two Well ompatible Donors and One Ultranarrow Bandgap Nonfullerene Acceptor. Advanced Energy Materials, 2018, 8, 1702854.	19.5	195
17	Ultratough, Ultrastrong, and Highly Conductive Graphene Films with Arbitrary Sizes. Advanced Materials, 2014, 26, 7588-7592.	21.0	182
18	Nematic liquid crystal materials as a morphology regulator for ternary small molecule solar cells with power conversion efficiency exceeding 10%. Journal of Materials Chemistry A, 2017, 5, 3589-3598.	10.3	173

#	Article	IF	CITATIONS
19	Over 13% Efficiency Ternary Nonfullerene Polymer Solar Cells with Tilted Up Absorption Edge by Incorporating a Medium Bandgap Acceptor. Advanced Energy Materials, 2018, 8, 1801968.	19.5	167
20	Ternary Nonfullerene Polymer Solar Cells with a Power Conversion Efficiency of 11.6% by Inheriting the Advantages of Binary Cells. ACS Energy Letters, 2018, 3, 555-561.	17.4	161
21	Multifunctional Pristine Chemically Modified Graphene Films as Strong as Stainless Steel. Advanced Materials, 2015, 27, 6708-6713.	21.0	157
22	Nitrogen and Sulfur Codoped Graphite Foam as a Selfâ€Supported Metalâ€Free Electrocatalytic Electrode for Water Oxidation. Advanced Energy Materials, 2016, 6, 1501492.	19.5	153
23	High-Quality Graphene Ribbons Prepared from Graphene Oxide Hydrogels and Their Application for Strain Sensors. ACS Nano, 2015, 9, 12320-12326.	14.6	148
24	Highly Sensitive Lowâ€Bandgap Perovskite Photodetectors with Response from Ultraviolet to the Nearâ€Infrared Region. Advanced Functional Materials, 2017, 27, 1703953.	14.9	148
25	Energy level modulation of non-fullerene acceptors enables efficient organic solar cells with small energy loss. Journal of Materials Chemistry A, 2018, 6, 2468-2475.	10.3	145
26	An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering. Energy and Environmental Science, 2016, 9, 2005-2010.	30.8	142
27	Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing. Carbohydrate Polymers, 2021, 266, 118100.	10.2	132
28	Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. Journal of Materials Chemistry A, 2019, 7, 7843-7851.	10.3	130
29	Janus-interface engineering boosting solar steam towards high-efficiency water collection. Energy and Environmental Science, 2021, 14, 5330-5338.	30.8	122
30	Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. Energy and Environmental Science, 2018, 11, 559-565.	30.8	119
31	Trap-Assisted Photomultiplication Polymer Photodetectors Obtaining an External Quantum Efficiency of 37†500%. ACS Applied Materials & Interfaces, 2015, 7, 5890-5897.	8.0	118
32	Solution-Processed PEDOT:PSS/Graphene Composites as the Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2014, 6, 3587-3593.	8.0	115
33	NiFe Alloy Protected Silicon Photoanode for Efficient Water Splitting. Advanced Energy Materials, 2017, 7, 1601805.	19.5	109
34	Topological Design of Ultrastrong and Highly Conductive Graphene Films. Advanced Materials, 2017, 29, 1702831.	21.0	108
35	Organic Photodetectors with Gain and Broadband/Narrowband Response under Top/Bottom Illumination Conditions. Advanced Optical Materials, 2018, 6, 1800249.	7.3	108
36	Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsion separation. Journal of Materials Chemistry A, 2015, 3, 20113-20117.	10.3	101

#	Article	IF	CITATIONS
37	Simultaneously improved efficiency and average visible transmittance of semitransparent polymer solar cells with two ultra-narrow bandgap nonfullerene acceptors. Journal of Materials Chemistry A, 2018, 6, 21485-21492.	10.3	80
38	Nitrogen-Doped Holey Graphene Film-Based Ultrafast Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2016, 8, 20741-20747.	8.0	79
39	Synthesis of graphene oxide sheets with controlled sizes from sieved graphite flakes. Carbon, 2016, 110, 34-40.	10.3	77
40	Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response. Nanoscale, 2016, 8, 5578-5586.	5.6	77
41	Graphene oxide induced hydrothermal carbonization of egg proteins for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 17040-17047.	10.3	74
42	Highly sensitive polymer photodetectors with a broad spectral response range from UV light to the near infrared region. Journal of Materials Chemistry C, 2015, 3, 7386-7393.	5.5	72
43	Designing an asymmetrical isomer to promote the LUMO energy level and molecular packing of a non-fullerene acceptor for polymer solar cells with 12.6% efficiency. Chemical Science, 2018, 9, 8142-8149.	7.4	67
44	A liquid crystal material as the third component for ternary polymer solar cells with an efficiency of 10.83% and enhanced stability. Journal of Materials Chemistry A, 2017, 5, 13145-13153.	10.3	65
45	A small graphene oxide sheet/polyvinylidene fluoride bilayer actuator with large and rapid responses to multiple stimuli. Nanoscale, 2017, 9, 17465-17470.	5.6	65
46	Arbitrary waveform AC line filtering applicable to hundreds of volts based on aqueous electrochemical capacitors. Nature Communications, 2019, 10, 2855.	12.8	65
47	Grapheneâ€Based Organic Electrochemical Capacitors for AC Line Filtering. Advanced Energy Materials, 2017, 7, 1700591.	19.5	64
48	Efficient Ternary Organic Solar Cells with Two Compatible Nonâ€Fullerene Materials as One Alloyed Acceptor. Small, 2018, 14, e1802983.	10.0	55
49	Tailoring the oxygenated groups of graphene hydrogels for high-performance supercapacitors with large areal mass loadings. Journal of Materials Chemistry A, 2018, 6, 6587-6594.	10.3	54
50	Highly Ordered Graphene Solid: An Efficient Platform for Capacitive Sodium-Ion Storage with Ultrahigh Volumetric Capacity and Superior Rate Capability. ACS Nano, 2019, 13, 9161-9170.	14.6	53
51	Ultrasonic treatment increased functional properties and in vitro digestion of actomyosin complex during meat storage. Food Chemistry, 2021, 352, 129398.	8.2	52
52	A General Route to Robust Nacre-Like Graphene Oxide Films. ACS Applied Materials & Interfaces, 2015, 7, 15010-15016.	8.0	48
53	Poly(Ionic Liquid)-Derived Graphitic Nanoporous Carbon Membrane Enables Superior Supercapacitive Energy Storage. ACS Nano, 2019, 13, 10261-10271.	14.6	46
54	Suppressing the Selfâ€Discharge of Supercapacitors by Modifying Separators with an Ionic Polyelectrolyte. Advanced Materials Interfaces, 2018, 5, 1701547.	3.7	42

MIAO ZHANG

#	Article	IF	CITATIONS
55	Highly Conductive Stretchable Electrodes Prepared by In Situ Reduction of Wavy Graphene Oxide Films Coated on Elastic Tapes. Advanced Electronic Materials, 2016, 2, 1600022.	5.1	40
56	Graphene-based electrochemical capacitors with integrated high-performance. Materials Today Energy, 2017, 6, 181-188.	4.7	40
57	A Microfluidic Biosensor Based on Magnetic Nanoparticle Separation, Quantum Dots Labeling and MnO2 Nanoflower Amplification for Rapid and Sensitive Detection of Salmonella Typhimurium. Micromachines, 2020, 11, 281.	2.9	40
58	An ultrasensitive moisture driven actuator based on small flakes of graphene oxide. Sensors and Actuators B: Chemical, 2017, 242, 418-422.	7.8	36
59	Porous Carbon Membrane‣upported Atomically Dispersed Pyrroleâ€Type FeN ₄ as Active Sites for Electrochemical Hydrazine Oxidation Reaction. Small, 2020, 16, e2002203.	10.0	34
60	Efficient ternary polymer solar cells with a parallel-linkage structure. Journal of Materials Chemistry C, 2015, 3, 11930-11936.	5.5	33
61	Simultaneously Enhanced Efficiency and Stability of Polymer Solar Cells by Employing Solvent Additive and Upside-down Drying Method. ACS Applied Materials & Interfaces, 2017, 9, 8863-8871.	8.0	32
62	Mildly reduced less defective graphene oxide/sulfur/carbon nanotube composite films for high-performance lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2016, 18, 11104-11110.	2.8	30
63	Ternary non-fullerene polymer solar cells with an efficiency of 11.6% by simultaneously optimizing photon harvesting and phase separation. Journal of Materials Chemistry A, 2018, 6, 11751-11758.	10.3	30
64	A Largeâ€ s cale Graphene–Bimetal Film Electrode with an Ultrahigh Mass Catalytic Activity for Durable Water Splitting. Advanced Energy Materials, 2018, 8, 1800403.	19.5	29
65	A graphene oxide/oxygen deficient molybdenum oxide nanosheet bilayer as a hole transport layer for efficient polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 18380-18383.	10.3	28
66	Poly(ionic liquid)â€Armored MXene Membrane: Interlayer Engineering for Facilitated Water Transport. Angewandte Chemie - International Edition, 2022, 61, e202202515.	13.8	27
67	"Mix-Then-On-Demand-Complex† <i>In Situ</i> Cascade Anionization and Complexation of Graphene Oxide for High-Performance Nanofiltration Membranes. ACS Nano, 2021, 15, 4440-4449.	14.6	26
68	Inhibiting the growth of lithium dendrites at high current densities with oriented graphene foam. Journal of Materials Chemistry A, 2018, 6, 15603-15609.	10.3	25
69	From wood to thin porous carbon membrane: Ancient materials for modern ultrafast electrochemical capacitors in alternating current line filtering. Energy Storage Materials, 2021, 35, 327-333.	18.0	25
70	Preparation of aloe polysaccharide/honey/PVA composite hydrogel: Antibacterial activity and promoting wound healing. International Journal of Biological Macromolecules, 2022, 211, 249-258.	7.5	25
71	Organic dispersions of graphene oxide with arbitrary concentrations and improved chemical stability. Chemical Communications, 2017, 53, 11005-11007.	4.1	20
72	Multitasking tartaric-acid-enabled, highly conductive, and stable MXene/conducting polymer composite for ultrafast supercapacitor. Cell Reports Physical Science, 2021, 2, 100449.	5.6	19

#	Article	IF	CITATIONS
73	Review on smart strategies for achieving highly efficient ternary polymer solar cells. APL Materials, 2020, 8, .	5.1	18
74	High-quality graphene films and nitrogen-doped organogels prepared from the organic dispersions of graphene oxide. Carbon, 2018, 129, 15-20.	10.3	18
75	Circulating T follicular helper cells are associated with rapid virological response in chronic hepatitis C patients undergoing peginterferon therapy. International Immunopharmacology, 2016, 34, 235-243.	3.8	17
76	Fusedâ€Ring Core Engineering for Small Molecule Acceptors Enable Highâ€Performance Nonfullerene Polymer Solar Cells. Small Methods, 2019, 3, 1900280.	8.6	17
77	A transport channel-regulated MXene membrane <i>via</i> organic phosphonic acids for efficient water permeation. Chemical Communications, 2021, 57, 6245-6248.	4.1	17
78	Application of Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Multiâ€residue Method for the Simultaneous Determination of Polychlorinated Biphenyls, Organochlorine, and Pyrethroid Pesticides in Aqueous Sample. Clean - Soil, Air, Water, 2012, 40, 1326-1333.	1.1	15
79	Nanodancing with Moisture: Humidityâ€Sensitive Bilayer Actuator Derived from Cellulose Nanofibrils and Reduced Graphene Oxide. Advanced Intelligent Systems, 2022, 4, 2100084.	6.1	15
80	Mo, Fe bimetallic carbide composite as high stability electrocatalyst for oxygen reduction reaction. Journal of Environmental Chemical Engineering, 2022, 10, 108052.	6.7	15
81	Efficient ternary organic photovoltaic cells with better trade-off photon harvesting and phase separation by doping DIB-SQ. Journal of Materials Chemistry C, 2016, 4, 7809-7816.	5.5	12
82	13.26% Efficiency Polymer Solar Cells by Optimizing Photogenerated Exciton Distribution and Phase Separation with the Third Component. Solar Rrl, 2019, 3, 1900269.	5.8	12
83	Ionic liquid magnetic bar microextraction and HPLC determination of carbamate pesticides in real water samples. Mikrochimica Acta, 2012, 179, 193-199.	5.0	11
84	Fluorene-fused ladder-type non-fullerene small molecule acceptors for high-performance polymer solar cells. Materials Chemistry Frontiers, 2019, 3, 709-715.	5.9	11
85	Immunogenicity of Hepatitis B Vaccine in Preterm or Low Birth Weight Infants: A Meta-Analysis. American Journal of Preventive Medicine, 2020, 59, 278-287.	3.0	11
86	Dramatically Boosted Efficiency of Small Molecule Solar Cells by Synergistically Optimizing Molecular Aggregation and Crystallinity. ACS Sustainable Chemistry and Engineering, 2017, 5, 1982-1989.	6.7	10
87	Bridged Carbon Fabric Membrane with Boosted Performance in AC Lineâ€Filtering Capacitors. Advanced Science, 2022, 9, e2105072.	11.2	10
88	Ultrasound-assisted headspace ionic-liquid microextraction of polycyclic aromatic hydrocarbons at elevated temperatures. Mikrochimica Acta, 2012, 177, 465-471.	5.0	9
89	Tfh cell-mediated humoral immune response and HBsAg level can predict HBeAg seroconversion in chronic hepatitis B patients receiving peginterferon-1± therapy. Molecular Immunology, 2016, 73, 37-45.	2.2	9
90	Gas chromatographic determination of three chlorophenols in toilet paper by ultrasonic assisted extraction and synchronous derivative dispersive liquid–liquid microextraction. Analytical Methods, 2014, 6, 207-214.	2.7	8

MIAO ZHANG

#	Article	IF	CITATIONS
91	Solutionâ€Processed Graphene Composite Films as Freestanding Platinumâ€Free Counter Electrodes for Bendable Dye Sensitized Solar Cells. Chinese Journal of Chemistry, 2016, 34, 59-66.	4.9	8
92	Effects of the seasonal flooding on riparian soil seed bank in the Three Gorges Reservoir Region: a case study in Shanmu River. SpringerPlus, 2016, 5, 492.	1.2	8
93	Adjusting acceptor redistribution for highly efficient solvent additive-free polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 3202-3208.	5.5	8
94	Highly efficient polymer solar cells by step-by-step optimizing donor molecular packing and acceptor redistribution. Physical Chemistry Chemical Physics, 2017, 19, 709-716.	2.8	8
95	The soil seed bank of a rehabilitated drawâ€down zone and its similarity to standing vegetation in the Three Gorges Reservoir Area. Ecological Research, 2017, 32, 1011-1021.	1.5	7
96	Efficient Polymer Solar Cells with Open-Circuit Voltage of 1.01 V and Power Conversion Efficiency of 8.09%. ACS Omega, 2018, 3, 11562-11568.	3.5	6
97	A novel 9 <i>H</i> -indeno[1,2- <i>b</i>]pyrazine-2,3-dicarbonitrile end group for an efficient non-fullerene small molecule acceptor. Journal of Materials Chemistry C, 2019, 7, 10111-10118.	5.5	6
98	Seed rain and seed bank of a draw-down zone and their similarities to vegetation under the regulated water-level fluctuation in Xiangxi River. Journal of Freshwater Ecology, 2020, 35, 57-71.	1.2	6
99	Ultratough and ultrastrong graphene oxide hybrid films <i>via</i> a polycationitrile approach. Nanoscale Horizons, 2021, 6, 341-347.	8.0	6
100	Ultra-Sensitive, Rapid and On-Site Sensing Harmful Ingredients Used in Aquaculture with Magnetic Fluid SERS. Biosensors, 2022, 12, 169.	4.7	5
101	Preparation of Plasmonic Ag@PS Composite via Seed-Mediated In Situ Growth Method and Application in SERS. Frontiers in Chemistry, 2022, 10, 847203.	3.6	5
102	Liquid Metal Fiber Mat as a Highly Stable Solid-State Junction for Inkjet-Printed Flexible Reference Electrodes. Analytical Chemistry, 2022, 94, 6728-6735.	6.5	5
103	Poly(ionic liquid)â€Armored MXene Membrane: Interlayer Engineering for Facilitated Water Transport. Angewandte Chemie, 2022, 134, .	2.0	4
104	Analysis of two anti-tumor active ingredients in Radix Actinidiae chinensis by dispersive liquid–liquid microextraction coupled to high performance liquid chromatography–mass spectrometry. Analytical Methods, 2013, 5, 5227.	2.7	3
105	Determination of trace fungicides in environmental water samples using poly(HPMA-EDMA) monolith microextraction coupled to high performance liquid chromatography. Analytical Methods, 2014, 6, 4783-4789.	2.7	2
106	Hydrazine Oxidation Reaction: Porous Carbon Membraneâ€6upported Atomically Dispersed Pyrroleâ€Type FeN ₄ as Active Sites for Electrochemical Hydrazine Oxidation Reaction (Small 31/2020). Small, 2020, 16, 2070171.	10.0	2
107	Overt and occult hepatitis B infection after neonatal vaccination: mother-to-infant transmission and HBV vaccine effectiveness. International Journal of Infectious Diseases, 2021, 104, 601-609.	3.3	2
108	Reduced Graphene Oxide-Poly (Ionic Liquid) Composite Films of High Mechanical Performance. Frontiers in Materials, 2021, 8, .	2.4	2

#	Article	IF	CITATIONS
109	Biomimetic Graphite Foils with High Foldability and Conductivity. Small Methods, 2019, 3, 1800282.	8.6	1
110	Multitasking Tartaric Acid-Enabled Highly Conductive, Stable Titanium Carbide MXene/PEDOT:PSS Composite for Ultrafast Supercapacitor. SSRN Electronic Journal, 0, , .	0.4	0