
Judith Campisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/889567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular senescence: when bad things happen to good cells. Nature Reviews Molecular Cell Biology, 2007, 8, 729-740.	37.0	3,502
2	The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annual Review of Pathology: Mechanisms of Disease, 2010, 5, 99-118.	22.4	3,486
3	Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor. PLoS Biology, 2008, 6, e301.	5.6	3,067
4	Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, S4-S9.	3.6	2,606
5	Aging, Cellular Senescence, and Cancer. Annual Review of Physiology, 2013, 75, 685-705.	13.1	2,124
6	Geroscience: Linking Aging to Chronic Disease. Cell, 2014, 159, 709-713.	28.9	1,709
7	Four faces of cellular senescence. Journal of Cell Biology, 2011, 192, 547-556.	5.2	1,644
8	Cellular Senescence: Defining a Path Forward. Cell, 2019, 179, 813-827.	28.9	1,551
9	An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA. Developmental Cell, 2014, 31, 722-733.	7.0	1,376
10	Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. Journal of Clinical Investigation, 2013, 123, 966-972.	8.2	1,326
11	Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 2016, 22, 78-83.	30.7	1,273
12	Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO Journal, 2003, 22, 4212-4222.	7.8	1,131
13	Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nature Medicine, 2017, 23, 775-781.	30.7	994
14	Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell, 2017, 169, 132-147.e16.	28.9	979
15	Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discovery, 2017, 7, 165-176.	9.4	881
16	Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science, 2016, 354, 472-477.	12.6	824
17	MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nature Cell Biology, 2015, 17, 1049-1061.	10.3	802
18	Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metabolism, 2016, 23, 303-314.	16.2	776

Judith Campisi

#	Article	IF	CITATIONS
19	Lamin B1 loss is a senescence-associated biomarker. Molecular Biology of the Cell, 2012, 23, 2066-2075.	2.1	725
20	A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biology, 2020, 18, e3000599.	5.6	694
21	Cellular senescence as a tumor-suppressor mechanism. Trends in Cell Biology, 2001, 11, S27-S31.	7.9	629
22	Unmasking Transcriptional Heterogeneity in Senescent Cells. Current Biology, 2017, 27, 2652-2660.e4.	3.9	559
23	Cancer and ageing: rival demons?. Nature Reviews Cancer, 2003, 3, 339-349.	28.4	465
24	Cellular senescence as a tumor-suppressor mechanism. Trends in Cell Biology, 2001, 11, S27-S31.	7.9	408
25	Targeting senescent cells alleviates obesityâ€induced metabolic dysfunction. Aging Cell, 2019, 18, e12950.	6.7	395
26	A Human-Like Senescence-Associated Secretory Phenotype Is Conserved in Mouse Cells Dependent on Physiological Oxygen. PLoS ONE, 2010, 5, e9188.	2.5	356
27	p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. Journal of Cell Biology, 2013, 201, 613-629.	5.2	344
28	Cellular Senescence Is Induced by the Environmental Neurotoxin Paraquat and Contributes to Neuropathology Linked to Parkinson's Disease. Cell Reports, 2018, 22, 930-940.	6.4	342
29	Cellular senescence: putting the paradoxes in perspective. Current Opinion in Genetics and Development, 2011, 21, 107-112.	3.3	319
30	Regulation of cellular senescence by p53. FEBS Journal, 2001, 268, 2784-2791.	0.2	299
31	Regulation and Localization of the Bloom Syndrome Protein in Response to DNA Damage. Journal of Cell Biology, 2001, 153, 367-380.	5.2	257
32	Suppressing Cancer: The Importance of Being Senescent. Science, 2005, 309, 886-887.	12.6	241
33	Cellular senescence and the aging brain. Experimental Gerontology, 2015, 68, 3-7.	2.8	218
34	Cellular senescence and apoptosis: how cellular responses might influence aging phenotypes. Experimental Gerontology, 2003, 38, 5-11.	2.8	190
35	Analysis of individual cells identifies cellâ€ŧoâ€cell variability following induction of cellular senescence. Aging Cell, 2017, 16, 1043-1050.	6.7	182
36	Aging, tumor suppression and cancer: high wire-act!. Mechanisms of Ageing and Development, 2005, 126, 51-58.	4.6	156

JUDITH CAMPISI

#	Article	IF	CITATIONS
37	Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. Journal of the National Cancer Institute, 2021, 113, 1285-1298.	6.3	156
38	Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nature Communications, 2020, 11, 1996.	12.8	141
39	Context-dependent effects of cellular senescence in cancer development. British Journal of Cancer, 2016, 114, 1180-1184.	6.4	131
40	Placental membrane aging and HMGB1 signaling associated with human parturition. Aging, 2016, 8, 216-230.	3.1	122
41	Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS ONE, 2020, 15, e0227887.	2.5	120
42	Measuring Aging and Identifying Aging Phenotypes in Cancer Survivors. Journal of the National Cancer Institute, 2019, 111, 1245-1254.	6.3	119
43	Senescence cell–associated extracellular vesicles serve as osteoarthritis disease and therapeutic markers. JCI Insight, 2019, 4, .	5.0	103
44	Cell Autonomous and Non-Autonomous Effects of Senescent Cells in the Skin. Journal of Investigative Dermatology, 2015, 135, 1722-1726.	0.7	102
45	Oxidation resistance 1 is a novel senolytic target. Aging Cell, 2018, 17, e12780.	6.7	95
46	SILAC Analysis Reveals Increased Secretion of Hemostasis-Related Factors by Senescent Cells. Cell Reports, 2019, 28, 3329-3337.e5.	6.4	94
47	Cellular Senescence and the Senescence-Associated Secretory Phenotype as Drivers of Skin Photoaging. Journal of Investigative Dermatology, 2021, 141, 1119-1126.	0.7	87
48	Does Damage to DNA and Other Macromolecules Play a Role in Aging? If So, How?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 175-178.	3.6	86
49	Of Flies, Mice, and Men: Evolutionarily Conserved Tissue Damage Responses and Aging. Developmental Cell, 2015, 32, 9-18.	7.0	81
50	The helix-loop-helix protein ld-1 and a retinoblastoma protein binding mutant of SV40 T antigen synergize to reactivate DNA synthesis in senescent human fibroblasts. Genesis, 1996, 18, 161-172.	2.1	71
51	Pleiotropic age-dependent effects of mitochondrial dysfunction on epidermal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10407-10412.	7.1	67
52	Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity. Aging Cell, 2020, 19, e13117.	6.7	60
53	Strategies to Prevent or Remediate Cancer and Treatment-Related Aging. Journal of the National Cancer Institute, 2021, 113, 112-122.	6.3	57
54	Helix-loop-helix proteins in mammary gland development and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 2003, 8, 225-239.	2.7	55

JUDITH CAMPISI

#	Article	IF	CITATIONS
55	Aging and cancer cell biology, 2007. Aging Cell, 2007, 6, 261-263.	6.7	44
56	Depletion of senescent-like neuronal cells alleviates cisplatin-induced peripheral neuropathy in mice. Scientific Reports, 2020, 10, 14170.	3.3	41
57	The power of proteomics to monitor senescence-associated secretory phenotypes and beyond: toward clinical applications. Expert Review of Proteomics, 2020, 17, 297-308.	3.0	40
58	How Does Proliferative Homeostasis Change With Age? What Causes It and How Does It Contribute to Aging?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 164-166.	3.6	39
59	Responses of human embryonic stem cells and their differentiated progeny to ionizing radiation. Biochemical and Biophysical Research Communications, 2012, 426, 100-105.	2.1	35
60	KDM4 orchestrates epigenomic remodeling of senescent cells and potentiates the senescence-associated secretory phenotype. Nature Aging, 2021, 1, 454-472.	11.6	31
61	Quantitative Proteomic Analysis of the Senescenceâ€Associated Secretory Phenotype by Dataâ€Independent Acquisition. Current Protocols, 2021, 1, e32.	2.9	25
62	Suppression of invasion and metastasis in aggressive salivary cancer cells through targeted inhibition of ID1 gene expression. Cancer Letters, 2016, 377, 11-16.	7.2	20
63	Extending human healthspan and longevity: a symposium report. Annals of the New York Academy of Sciences, 2022, 1507, 70-83.	3.8	18
64	FOXO3 targets are reprogrammed as Huntington's disease neural cells and striatal neurons face senescence with p16 ^{INK4a} increase. Aging Cell, 2020, 19, e13226.	6.7	17
65	Senolysis induced by 25-hydroxycholesterol targets CRYAB in multiple cell types. IScience, 2022, 25, 103848.	4.1	17
66	Ageâ€associated expression of p21and p53 during human wound healing. Aging Cell, 2021, 20, e13354.	6.7	15
67	Cannabidiol Treatment Results in a Common Gene Expression Response Across Aggressive Cancer Cells from Various Origins. Cannabis and Cannabinoid Research, 2021, 6, 148-155.	2.9	11
68	Ageâ€related telomere attrition causes aberrant gene expression in subâ€telomeric regions. Aging Cell, 2021, 20, e13357.	6.7	11
69	Cellular Senescence, Aging and Cancer. Scientific World Journal, The, 2001, 1, 65-65.	2.1	8
70	Analysis of Tumor Suppressor Gene-Induced Senescence. , 2003, 223, 155-172.		8
71	Targeting <i>ID2</i> expression triggers a more differentiated phenotype and reduces aggressiveness in human salivary gland cancer cells. Genes To Cells, 2016, 21, 915-920.	1.2	8
72	Heregulin, a new regulator of telomere length in human cells. Oncotarget, 2015, 6, 39422-39436.	1.8	8

Judith Campisi

#	Article	IF	CITATIONS
73	TBX3 Promotes Melanoma Migration by Transcriptional Activation of ID1, which Prevents Activation of E-Cadherin by MITF. Journal of Investigative Dermatology, 2021, 141, 2250-2260.e2.	0.7	6
74	Heregulin, a new interactor of the telosome/shelterin complex in human telomeres. Oncotarget, 2015, 6, 39408-39421.	1.8	5
75	Recent advances in cellular senescence, cancer and aging. Biotechnology and Bioprocess Engineering, 2001, 6, 231-236.	2.6	3
76	The Bloom Syndrome Protein BLM Is Selectively Cleaved during Apoptotic Cell Death. Scientific World Journal, The, 2001, 1, 34-34.	2.1	1
77	The helixâ€loopâ€helix protein Idâ€1 and a retinoblastoma protein binding mutant of SV40 T antigen synergize to reactivate DNA synthesis in senescent human fibroblasts. Genesis, 1996, 18, 161-172.	2.1	1
78	Telomeres, aging and cancer: In search of a happy ending. , 0, .		1
79	Reply: Cancer turnover at old age. Nature Reviews Cancer, 2003, 3, 388-388.	28.4	0