
Sunsun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8895630/publications.pdf Version: 2024-02-01

SUNSUN LI

#	Article	IF	CITATIONS
1	Terminal alkyl chain tuning of small molecule donor enables optimized morphology and efficient all-small-molecule organic solar cells. Dyes and Pigments, 2022, 200, 110147.	2.0	1
2	Terthiophene based non-fused electron acceptors for efficient organic solar cells. Organic Electronics, 2022, 105, 106512.	1.4	17
3	Facile Modification of a Noncovalently Fused-Ring Electron Acceptor Enables Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 45806-45814.	4.0	27
4	Optimized Charge Transport Channel Enables Thick-Film All-Small-Molecule Organic Solar Cells. Energy & Fuels, 2021, 35, 19756-19764.	2.5	0
5	Reduced Nonradiative Recombination Energy Loss Enabled Efficient Polymer Solar Cells via Tuning Alkyl Chain Positions on Pendent Benzene Units of Polymers. ACS Applied Materials & Interfaces, 2020, 12, 24184-24191.	4.0	7
6	15.3% efficiency all-small-molecule organic solar cells enabled by symmetric phenyl substitution. Science China Materials, 2020, 63, 1142-1150.	3.5	140
7	Enhanced photovoltaic effect from naphtho[2,3- <i>c</i>]thiophene-4,9-dione-based polymers through alkyl side chain induced backbone distortion. Journal of Materials Chemistry A, 2020, 8, 14706-14712.	5.2	10
8	Influence of Covalent and Noncovalent Backbone Rigidification Strategies on the Aggregation Structures of a Wide-Band-Gap Polymer for Photovoltaic Cells. Chemistry of Materials, 2020, 32, 1993-2003.	3.2	36
9	Enhanced intermolecular interactions to improve twisted polymer photovoltaic performance. Science China Chemistry, 2019, 62, 370-377.	4.2	29
10	Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules. Journal of Materials Chemistry C, 2019, 7, 3206-3211.	2.7	27
11	p-Doped Conducting Polyelectrolyte as an Anode Interlayer Enables High Efficiency for 1 cm ² Printed Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 20205-20213.	4.0	28
12	Tuning Charge Generation Process of Rylene Imide-Based Solar Cells via Chalcogen-Atom-Annulation. Chemistry of Materials, 2019, 31, 3636-3643.	3.2	22
13	A Selfâ€Organized Poly(vinylpyrrolidone)â€Based Cathode Interlayer in Inverted Fullereneâ€Free Organic Solar Cells. Advanced Materials, 2019, 31, e1804657.	11.1	43
14	Quenching to the Percolation Threshold in Organic Solar Cells. Joule, 2019, 3, 443-458.	11.7	183
15	Solar Cells: Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent (Adv. Mater. 8/2018). Advanced Materials, 2018, 30, 1870054.	11.1	3
16	Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent. Advanced Materials, 2018, 30, 1705485.	11.1	150
17	A Highâ€Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push–Pull Effect of the Nonfullerene Acceptor. Advanced Materials, 2018, 30, e1707170.	11.1	351
18	Tunable Electron Donating and Accepting Properties Achieved by Modulating the Steric Hindrance of Side Chains in A-D-A Small-Molecule Photovoltaic Materials. Chemistry of Materials, 2018, 30, 619-628.	3.2	49

Sunsun Li

#	Article	IF	CITATIONS
19	Environmentally Friendly Solventâ€Processed Organic Solar Cells that are Highly Efficient and Adaptable for the Bladeâ€Coating Method. Advanced Materials, 2018, 30, 1704837.	11.1	173
20	Design and application of volatilizable solid additives in non-fullerene organic solar cells. Nature Communications, 2018, 9, 4645.	5.8	205
21	Measuring Temperature-Dependent Miscibility for Polymer Solar Cell Blends: An Easily Accessible Optical Method Reveals Complex Behavior. Chemistry of Materials, 2018, 30, 3943-3951.	3.2	38
22	Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nature Materials, 2018, 17, 703-709.	13.3	701
23	A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells. Journal of the American Chemical Society, 2018, 140, 7159-7167.	6.6	654
24	Correlating Threeâ€dimensional Morphology With Function in PBDBâ€T:ITâ€M Nonâ€Fullerene Organic Solar Cells. Solar Rrl, 2018, 2, 1800114.	3.1	49
25	Efficient Fullerene-Free Polymer Solar Cells Based on Alkylthio Substituted Conjugated Polymers. Journal of Physical Chemistry C, 2017, 121, 4825-4833.	1.5	28
26	Significant Influence of the Methoxyl Substitution Position on Optoelectronic Properties and Molecular Packing of Smallâ€Molecule Electron Acceptors for Photovoltaic Cells. Advanced Energy Materials, 2017, 7, 1700183.	10.2	184
27	Two Wellâ€Miscible Acceptors Work as One for Efficient Fullereneâ€Free Organic Solar Cells. Advanced Materials, 2017, 29, 1700437.	11.1	157
28	Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 7148-7151.	6.6	2,524
29	Morphology control enables thickness-insensitive efficient nonfullerene polymer solar cells. Materials Chemistry Frontiers, 2017, 1, 2057-2064.	3.2	42
30	Subtle side-chain tuning on terminal groups of small molecule electron acceptors for efficient fullerene-free polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 15175-15182.	5.2	52
31	Potential of Nonfullerene Small Molecules with High Photovoltaic Performance. Chemistry - an Asian Journal, 2017, 12, 2160-2171.	1.7	45
32	Highâ€Efficiency Nonfullerene Organic Solar Cells: Critical Factors that Affect Complex Multi‣ength Scale Morphology and Device Performance. Advanced Energy Materials, 2017, 7, 1602000.	10.2	232
33	Design of a New Smallâ€Molecule Electron Acceptor Enables Efficient Polymer Solar Cells with High Fill Factor. Advanced Materials, 2017, 29, 1704051.	11.1	224
34	Precise Manipulation of Multilength Scale Morphology and Its Influence on Ecoâ€Friendly Printed Allâ€Polymer Solar Cells. Advanced Functional Materials, 2017, 27, 1702016.	7.8	99
35	Environmentally-friendly solvent processed fullerene-free organic solar cells enabled by screening halogen-free solvent additives. Science China Materials, 2017, 60, 697-706.	3.5	33
36	Role of Polymer Segregation on the Mechanical Behavior of All-Polymer Solar Cell Active Layers. ACS Applied Materials & Interfaces, 2017, 9, 43886-43892.	4.0	40

Sunsun Li

#	Article	IF	CITATIONS
37	Ternary Polymer Solar Cells based on Two Acceptors and One Donor for Achieving 12.2% Efficiency. Advanced Materials, 2017, 29, 1604059.	11.1	333
38	Fullereneâ€Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Advanced Materials, 2016, 28, 4734-4739.	11.1	1,698
39	Greenâ€Solventâ€Processed Allâ€Polymer Solar Cells Containing a Perylene Diimideâ€Based Acceptor with an Efficiency over 6.5%. Advanced Energy Materials, 2016, 6, 1501991.	10.2	157
40	Energy‣evel Modulation of Smallâ€Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells. Advanced Materials, 2016, 28, 9423-9429.	11.1	1,307
41	High Performance Organic Solar Cells Processed by Blade Coating in Air from a Benign Food Additive Solution. Chemistry of Materials, 2016, 28, 7451-7458.	3.2	91
42	Manipulation of Domain Purity and Orientational Ordering in High Performance All-Polymer Solar Cells. Chemistry of Materials, 2016, 28, 6178-6185.	3.2	87
43	Design and Synthesis of a Low Bandgap Small Molecule Acceptor for Efficient Polymer Solar Cells. Advanced Materials, 2016, 28, 8283-8287.	11.1	421
44	Fullerene-free polymer solar cell based on a polythiophene derivative with an unprecedented energy loss of less than 0.5 eV. Journal of Materials Chemistry A, 2016, 4, 18043-18049.	5.2	88
45	A Novel pH Neutral Self-Doped Polymer for Anode Interfacial Layer in Efficient Polymer Solar Cells. Macromolecules, 2016, 49, 8126-8133.	2.2	69
46	Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials. Chemical Reviews, 2016, 116, 7397-7457.	23.0	998
47	Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%. Science China Materials, 2015, 58, 953-960.	3.5	41
48	2D-Conjugated Benzodithiophene-Based Polymer Acceptor: Design, Synthesis, Nanomorphology, and Photovoltaic Performance. Macromolecules, 2015, 48, 7156-7163.	2.2	70
49	Over 13% Efficiency in Blade-coated Organic Solar Cells. , 0, , .		0