
Richard T Eastman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8894957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A platform of assays for the discovery of anti-Zika small-molecules with activity in a 3D-bioprinted outer-blood-retina model. PLoS ONE, 2022, 17, e0261821.	2.5	6
2	Allosteric Binders of ACE2 Are Promising Anti-SARS-CoV-2 Agents. ACS Pharmacology and Translational Science, 2022, 5, 468-478.	4.9	3
3	Synergistic and Antagonistic Drug Combinations against SARS-CoV-2. Molecular Therapy, 2021, 29, 873-885.	8.2	78
4	Identification and Profiling of a Novel Diazaspiro[3.4]octane Chemical Series Active against Multiple Stages of the Human Malaria Parasite <i>Plasmodium falciparum</i> and Optimization Efforts. Journal of Medicinal Chemistry, 2021, 64, 2291-2309.	6.4	11
5	Application of niclosamide and analogs as small molecule inhibitors of Zika virus and SARS-CoV-2 infection. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127906.	2.2	15
6	Deep learning identifies synergistic drug combinations for treating COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	87
7	Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31365-31375.	7.1	27
8	Targeting ACE2–RBD Interaction as a Platform for COVID-19 Therapeutics: Development and Drug-Repurposing Screen of an AlphaLISA Proximity Assay. ACS Pharmacology and Translational Science, 2020, 3, 1352-1360.	4.9	60
9	Modulation of Triple Artemisinin-Based Combination Therapy Pharmacodynamics by <i>Plasmodium falciparum</i> Genotype. ACS Pharmacology and Translational Science, 2020, 3, 1144-1157.	4.9	8
10	Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Central Science, 2020, 6, 672-683.	11.3	684
11	Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2. Frontiers in Pharmacology, 2020, 11, 592737.	3.5	69
12	Plasmodium vivax chloroquine resistance links to pvcrt transcription in a genetic cross. Nature Communications, 2019, 10, 4300.	12.8	35
13	New WS9326A Derivatives and One New Annimycin Derivative with Antimalarial Activity are Produced by <i>Streptomyces asterosporus</i> DSM 41452 and Its Mutant. ChemBioChem, 2018, 19, 272-279.	2.6	25
14	Artemisinin resistance phenotypes and K13 inheritance in a <i>Plasmodium falciparum</i> cross and <i>Aotus</i> model. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12513-12518.	7.1	46
15	Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS Central Science, 2018, 4, 1727-1741.	11.3	32
16	Using Machine Learning to Predict Synergistic Antimalarial Compound Combinations With Novel Structures. Frontiers in Pharmacology, 2018, 9, 1096.	3.5	27
17	A systematic and prospectively validated approach for identifying synergistic drug combinations against malaria. Malaria Journal, 2018, 17, 160.	2.3	19
18	Sulfamethoxazole Levels in HIV-Exposed Uninfected Ugandan Children. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1718-1721.	1.4	1

RICHARD T EASTMAN

#	Article	IF	CITATIONS
19	PfCRT and PfMDR1 modulate interactions of artemisinin derivatives and ion channel blockers. Scientific Reports, 2016, 6, 25379.	3.3	15
20	High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations. Scientific Reports, 2015, 5, 13891.	3.3	92
21	Regulation of Plasmodium yoelii Oocyst Development by Strain- and Stage-Specific Small-Subunit rRNA. MBio, 2015, 6, e00117.	4.1	11
22	Actinoramide A Identified as a Potent Antimalarial from Titration-Based Screening of Marine Natural Product Extracts. Journal of Natural Products, 2015, 78, 2411-2422.	3.0	30
23	A Specific Inhibitor of PfCDPK4 Blocks Malaria Transmission: Chemical-genetic Validation. Journal of Infectious Diseases, 2014, 209, 275-284.	4.0	83
24	Supergenomic Network Compression and the Discovery of EXP1 as a Glutathione Transferase Inhibited by Artesunate. Cell, 2014, 158, 916-928.	28.9	113
25	<i>Ex Vivo</i> Susceptibility of Plasmodium falciparum to Antimalarial Drugs in Western, Northern, and Eastern Cambodia, 2011-2012: Association with Molecular Markers. Antimicrobial Agents and Chemotherapy, 2013, 57, 5277-5283.	3.2	34
26	A Class of Tricyclic Compounds Blocking Malaria Parasite Oocyst Development and Transmission. Antimicrobial Agents and Chemotherapy, 2013, 57, 425-435.	3.2	32
27	Genomeâ€wide profiling of chromosome interactions in <i><scp>P</scp>lasmodium falciparum</i> characterizes nuclear architecture and reconfigurations associated with antigenic variation. Molecular Microbiology, 2013, 90, 519-537.	2.5	48
28	Drugâ€resistant malaria: Molecular mechanisms and implications for public health. FEBS Letters, 2011, 585, 1551-1562.	2.8	222
29	Piperaquine Resistance Is Associated with a Copy Number Variation on Chromosome 5 in Drug-Pressured <i>Plasmodium falciparum</i> Parasites. Antimicrobial Agents and Chemotherapy, 2011, 55, 3908-3916.	3.2	102
30	Quantitative assessment of <i>Plasmodium falciparum</i> sexual development reveals potent transmission-blocking activity by methylene blue. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1214-23.	7.1	293
31	Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nature Reviews Microbiology, 2009, 7, 864-874.	28.6	440
32	Recent highlights in antimalarial drug resistance and chemotherapy research. Trends in Parasitology, 2008, 24, 537-544.	3.3	80
33	Resistance mutations at the lipid substrate binding site of Plasmodium falciparum protein farnesyltransferase. Molecular and Biochemical Parasitology, 2007, 152, 66-71.	1.1	28
34	C-terminal proteolysis of prenylated proteins in trypanosomatids and RNA interference of enzymes required for the post-translational processing pathway of farnesylated proteins. Molecular and Biochemical Parasitology, 2007, 153, 115-124.	1.1	25
35	Thematic review series: Lipid Posttranslational Modifications. Fighting parasitic disease by blocking protein farnesylation. Journal of Lipid Research, 2006, 47, 233-240.	4.2	104
36	Resistance to a Protein Farnesyltransferase Inhibitor in Plasmodium falciparum. Journal of Biological Chemistry, 2005, 280, 13554-13559.	3.4	66

RICHARD T EASTMAN

#	Article	IF	CITATIONS
37	Protein farnesyl transferase inhibitors for the treatment of malaria and African trypanosomiasis. Current Opinion in Investigational Drugs, 2005, 6, 791-7.	2.3	33
38	The Candida albicans Lanosterol 14-α-Demethylase (ERG11) Gene Promoter Is Maximally Induced after Prolonged Growth with Antifungal Drugs. Antimicrobial Agents and Chemotherapy, 2004, 48, 1136-1144.	3.2	56
39	Design and Synthesis of Peptidomimetic Protein Farnesyltransferase Inhibitors as Anti-Trypanosoma brucei Agents. Journal of Medicinal Chemistry, 2004, 47, 432-445.	6.4	49
40	Cloning and analysis of Trypanosoma cruzi lanosterol 14α-demethylase. Molecular and Biochemical Parasitology, 2003, 132, 75-81.	1.1	18
41	Protein farnesyl and N-myristoyl transferases: piggy-back medicinal chemistry targets for the development of antitrypanosomatid and antimalarial therapeutics. Molecular and Biochemical Parasitology, 2003, 126, 155-163.	1.1	126
42	Oxidosqualene Cyclase Inhibitors as Antimicrobial Agents. Journal of Medicinal Chemistry, 2003, 46, 4240-4243.	6.4	33
43	Trypanosoma cruzi Inactivation in Human Platelet Concentrates and Plasma by a Psoralen (Amotosalen) Tj ETQq1	1,0,78431 3.2	l4,rgBT /C
44	Cloning, heterologous expression, and substrate specificities of protein farnesyltransferases from	1.1	53

Trypanosoma cruzi and Leishmania major. Molecular and Biochemical Parasitology, 2002, 122, 181-188. 44