
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/889436/publications.pdf Version: 2024-02-01

PARIO D MININNI

#	Article	IF	CITATIONS
1	Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New Journal of Physics, 2007, 9, 301-301.	2.9	237
2	A hybrid MPI–OpenMP scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel Computing, 2011, 37, 316-326.	2.1	196
3	Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence. Physical Review E, 2005, 72, 046301.	2.1	190
4	Numerical Study of Dynamo Action at Low Magnetic Prandtl Numbers. Physical Review Letters, 2005, 94, 164502.	7.8	143
5	Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers. Physics of Fluids, 2009, 21, .	4.0	137
6	Finite dissipation and intermittency in magnetohydrodynamics. Physical Review E, 2009, 80, 025401.	2.1	113
7	Shell-to-shell energy transfer in magnetohydrodynamics. II. Kinematic dynamo. Physical Review E, 2005, 72, 046302.	2.1	105
8	Dynamo Action in Magnetohydrodynamics and Hallâ€Magnetohydrodynamics. Astrophysical Journal, 2003, 587, 472-481.	4.5	101
9	Imprint of Large-Scale Flows on Turbulence. Physical Review Letters, 2005, 95, 264503.	7.8	97
10	Rapid Alignment of Velocity and Magnetic Field in Magnetohydrodynamic Turbulence. Physical Review Letters, 2008, 100, 085003.	7.8	96
11	Large-scale flow effects, energy transfer, and self-similarity on turbulence. Physical Review E, 2006, 74, 016303.	2.1	88
12	Turbulent cascades, transfer, and scale interactions in magnetohydrodynamics. New Journal of Physics, 2007, 9, 298-298.	2.9	84
13	Small-Scale Structures in Three-Dimensional Magnetohydrodynamic Turbulence. Physical Review Letters, 2006, 97, 244503.	7.8	81
14	On the Inverse Cascade of Magnetic Helicity. Astrophysical Journal, 2006, 640, 335-343.	4.5	76
15	Energy transfer in Hall-MHD turbulence: cascades, backscatter, and dynamo action. Journal of Plasma Physics, 2007, 73, 377-401.	2.1	74
16	Rotating helical turbulence. I. Global evolution and spectral behavior. Physics of Fluids, 2010, 22, .	4.0	74
17	Preferential concentration of heavy particles in turbulence. Journal of Turbulence, 2014, 15, 293-310.	1.4	74
18	Parallel Simulations in Turbulent MHD. Physica Scripta, 2005, , 123.	2.5	73

2

#	Article	IF	CITATIONS
19	Isotropization at small scales of rotating helically driven turbulence. Journal of Fluid Mechanics, 2012, 699, 263-279.	3.4	73
20	Inverse cascades in rotating stratified turbulence: Fast growth of large scales. Europhysics Letters, 2013, 102, 44006.	2.0	73
21	Lack of universality in decaying magnetohydrodynamic turbulence. Physical Review E, 2010, 81, 016318.	2.1	72
22	Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows. Physical Review E, 2009, 79, 056304.	2.1	71
23	The interplay between helicity and rotation in turbulence: implications for scaling laws and small-scale dynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1635-1662.	3.4	67
24	Nonlocal interactions in hydrodynamic turbulence at high Reynolds numbers: The slow emergence of scaling laws. Physical Review E, 2008, 77, 036306.	2.1	63
25	Helicity cascades in rotating turbulence. Physical Review E, 2009, 79, 026304.	2.1	63
26	Energy Spectra Stemming from Interactions of Alfvén Waves and Turbulent Eddies. Physical Review Letters, 2007, 99, 254502.	7.8	61
27	Scale Interactions in Magnetohydrodynamic Turbulence. Annual Review of Fluid Mechanics, 2011, 43, 377-397.	25.0	61
28	Dynamo Action in Hall Magnetohydrodynamics. Astrophysical Journal, 2002, 567, L81-L83.	4.5	59
29	Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-resolution direct numerical simulations. Physics of Fluids, 2015, 27, .	4.0	54
30	MHD simulations and astrophysical applications. Advances in Space Research, 2005, 35, 899-907.	2.6	53
31	Structures in magnetohydrodynamic turbulence: Detection and scaling. Physical Review E, 2010, 82, 056326.	2.1	53
32	Direct Simulations of Helical Hallâ€MHD Turbulence and Dynamo Action. Astrophysical Journal, 2005, 619, 1019-1027.	4.5	52
33	Turbulence comes in bursts in stably stratified flows. Physical Review E, 2014, 89, 043002.	2.1	51
34	Automatic Solar Flare Detection Using Neural Network Techniques. Solar Physics, 2002, 206, 347-357.	2.5	50
35	Role of the Hall Current in Magnetohydrodynamic Dynamos. Astrophysical Journal, 2003, 584, 1120-1126.	4.5	50
36	Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence. Physical Review E, 2012, 86, 036319.	2.1	50

#	Article	IF	CITATIONS
37	Stochastic Relaxation Oscillator Model for the Solar Cycle. Physical Review Letters, 2000, 85, 5476-5479.	7.8	49
38	Dynamo Regimes with a Nonhelical Forcing. Astrophysical Journal, 2005, 626, 853-863.	4.5	49
39	Vertical drafts and mixing in stratified turbulence: Sharp transition with Froude number. Europhysics Letters, 2018, 123, 44002.	2.0	48
40	Numerical solutions of the three-dimensional magnetohydrodynamicαmodel. Physical Review E, 2005, 71, 046304.	2.1	47
41	Rotating helical turbulence. II. Intermittency, scale invariance, and structures. Physics of Fluids, 2010, 22, .	4.0	46
42	Dynamo action at low magnetic Prandtl numbers: mean flow versus fully turbulent motions. New Journal of Physics, 2007, 9, 296-296.	2.9	45
43	Simple Model of a Stochastically Excited Solar Dynamo. Solar Physics, 2001, 201, 203-223.	2.5	44
44	Quantification of the strength of inertial waves in a rotating turbulent flow. Physics of Fluids, 2014, 26, .	4.0	44
45	Effect of Helicity and Rotation on the Free Decay of Turbulent Flows. Physical Review Letters, 2009, 103, 014501.	7.8	41
46	A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows. Physics of Fluids, 2005, 17, 035112.	4.0	40
47	Large-scale anisotropy in stably stratified rotating flows. Physical Review E, 2014, 90, 023018.	2.1	40
48	Emergence of helicity in rotating stratified turbulence. Physical Review E, 2013, 87, .	2.1	39
49	Biorthogonal Decomposition Techniques Unveil the Nature of the Irregularities Observed in the Solar Cycle. Physical Review Letters, 2002, 89, 061101.	7.8	36
50	Energy cascade rate in isothermal compressible magnetohydrodynamic turbulence. Journal of Plasma Physics, 2018, 84, .	2.1	34
51	Magnetohydrodynamic activity inside a sphere. Physics of Fluids, 2006, 18, 116602.	4.0	32
52	Helicity, topology, and Kelvin waves in reconnecting quantum knots. Physical Review A, 2016, 94, .	2.5	32
53	Dual constant-flux energy cascades to both large scales and small scales. Physics of Fluids, 2017, 29, .	4.0	32
54	Inverse cascades andαeffect at a low magnetic Prandtl number. Physical Review E, 2007, 76, 026316.	2.1	30

#	Article	IF	CITATIONS
55	Helicity dynamics in stratified turbulence in the absence of forcing. Physical Review E, 2013, 87, 063007.	2.1	30
56	Three regularization models of the Navierâ \in "Stokes equations. Physics of Fluids, 2008, 20, .	4.0	28
57	Dual cascade and dissipation mechanisms in helical quantum turbulence. Physical Review A, 2017, 95, .	2.5	28
58	Lessons from being challenged by COVID-19. Chaos, Solitons and Fractals, 2020, 137, 109923.	5.1	27
59	Study of Stochastic Fluctuations in a Shell Dynamo. Astrophysical Journal, 2002, 573, 454-463.	4.5	26
60	Hydrodynamic and magnetohydrodynamic computations inside a rotating sphere. New Journal of Physics, 2007, 9, 303-303.	2.9	26
61	Interplay between Alfvén and magnetosonic waves in compressible magnetohydrodynamics turbulence. Physics of Plasmas, 2017, 24, .	1.9	26
62	Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>α</mml:mi></mml:mrow>model and their large-eddy-simulation potential. Physical Review E, 2007, 76, 056310.</mml:math 	2.1	24
63	The dynamics of unforced turbulence at high Reynolds number for Taylor–Green vortices generalized to MHD. Geophysical and Astrophysical Fluid Dynamics, 2010, 104, 115-134.	1.2	24
64	Emergence of very long time fluctuations and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>f</mml:mi>in ideal flows. Physical Review E, 2011, 83, 066318.</mml:mrow></mml:math 	'> ₩ml:m</td <td>ath²⁴noise</td>	ath ²⁴ noise
65	Power laws and inverse motion modelling: application to turbulence measurements from satellite images. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 64, 10962.	1.7	24
66	The spatio-temporal spectrum of turbulent flows. European Physical Journal E, 2015, 38, 136.	1.6	24
67	GPU Parallelization of a Hybrid Pseudospectral Geophysical Turbulence Framework Using CUDA. Atmosphere, 2020, 11, 178.	2.3	24
68	The decay of turbulence in rotating flows. Physics of Fluids, 2011, 23, 065105.	4.0	22
69	Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green symmetries. Physical Review E, 2013, 87, 013110.	2.1	22
70	Cancellation exponent and multifractal structure in two-dimensional magnetohydrodynamics: Direct numerical simulations and Lagrangian averaged modeling. Physical Review E, 2005, 72, 045301.	2.1	21
71	Helical Turbulence Prevails over Inertial Waves in Forced Rotating Flows at High Reynolds and Low Rossby Numbers. Journals of the Atmospheric Sciences, 2011, 68, 2757-2770.	1.7	21
72	Inverse cascades in turbulence and the case of rotating flows. Physica Scripta, 2013, T155, 014032.	2.5	21

#	Article	IF	CITATIONS
73	Inverse cascade behavior in freely decaying two-dimensional fluid turbulence. Physical Review E, 2013, 87, .	2.1	21
74	Low magnetic Prandtl number dynamos with helical forcing. Physical Review E, 2005, 72, 056320.	2.1	20
75	Turbulent magnetic dynamo excitation at low magnetic Prandtl number. Physics of Plasmas, 2006, 13, 056502.	1.9	20
76	On the spatio-temporal behavior of magnetohydrodynamic turbulence in a magnetized plasma. Physics of Plasmas, 2016, 23, .	1.9	20
77	Inverse cascades and resonant triads in rotating and stratified turbulence. Physics of Fluids, 2017, 29, 111109.	4.0	20
78	Quantitative estimation of effective viscosity in quantum turbulence. Physical Review A, 2019, 99, .	2.5	19
79	Bayesian Estimation of Turbulent Motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35, 1343-1356.	13.9	18
80	Spatiotemporal detection of Kelvin waves in quantum turbulence simulations. Physical Review A, 2015, 92, .	2.5	18
81	Absorption of waves by large-scale winds in stratified turbulence. Physical Review E, 2015, 91, 033015.	2.1	18
82	von KÃįrmÃįn–Howarth equation for three-dimensional two-fluid plasmas. Physical Review E, 2016, 93, 063202.	2.1	18
83	Paradigmatic flow for small-scale magnetohydrodynamics: Properties of the ideal case and the collision of current sheets. Physical Review E, 2008, 78, 066401.	2.1	17
84	Stably stratified turbulence in the presence of large-scale forcing. Physical Review E, 2015, 92, 013003.	2.1	17
85	Hall-magnetohydrodynamic small-scale dynamos. Physical Review E, 2010, 82, 036406.	2.1	16
86	Large-scale behavior and statistical equilibria in rotating flows. Physical Review E, 2011, 83, 016309.	2.1	16
87	Preferential Concentration of Free-Falling Heavy Particles in Turbulence. Physical Review Letters, 2020, 125, 064504.	7.8	16
88	Fourier continuation method for incompressible fluids with boundaries. Computer Physics Communications, 2020, 256, 107482.	7.5	16
89	Direct numerical simulations of helical dynamo action: MHD and beyond. Nonlinear Processes in Geophysics, 2004, 11, 619-629.	1.3	14
90	Flow visualization and field line advection in computational fluid dynamics: application to magnetic fields and turbulent flows. New Journal of Physics, 2008, 10, 125007.	2.9	14

#	Article	IF	CITATIONS
91	Test Particle Energization and the Anisotropic Effects of Dynamical MHD Turbulence. Astrophysical Journal, 2017, 850, 19.	4.5	14
92	Understanding turbulence through numerical simulations. Physica A: Statistical Mechanics and Its Applications, 2004, 342, 69-75.	2.6	13
93	Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions. New Journal of Physics, 2007, 9, 304-304.	2.9	13
94	Lagrangian-averaged model for magnetohydrodynamic turbulence and the absence of bottlenecks. Physical Review E, 2009, 80, 016313.	2.1	13
95	Bayesian selection of scaling laws for motion modeling in images. , 2009, , .		13
96	Spectral modeling of rotating turbulent flows. Physics of Fluids, 2010, 22, .	4.0	12
97	Tridimensional to bidimensional transition in magnetohydrodynamic turbulence with a guide field and kinetic helicity injection. Physical Review Fluids, 2016, 1, .	2.5	12
98	Instantaneous Phase and Amplitude Correlation in the Solar Cycle. Solar Physics, 2002, 208, 167-179.	2.5	11
99	The Effect of Subfilter-Scale Physics on Regularization Models. Journal of Scientific Computing, 2011, 49, 21-34.	2.3	11
100	Intermittency in Hall-magnetohydrodynamics with a strong guide field. Physics of Plasmas, 2013, 20, .	1.9	11
101	Magnetic field reversals and long-time memory in conducting flows. Physical Review E, 2014, 90, 043010.	2.1	11
102	Abrupt Transition between Three-Dimensional and Two-Dimensional Quantum Turbulence. Physical Review Letters, 2020, 124, 134501.	7.8	11
103	Velocity and acceleration statistics in particle-laden turbulent swirling flows. Physical Review Fluids, 2020, 5, .	2.5	11
104	Turbulence in rotating Bose-Einstein condensates. Physical Review A, 2022, 105, .	2.5	11
105	Hall effect on magnetic reconnection at the Earth's magnetopause. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 1821-1826.	1.6	10
106	High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model. Physical Review E, 2011, 84, 016314.	2.1	10
107	Physically-Based Feature Tracking for CFD Data. IEEE Transactions on Visualization and Computer Graphics, 2013, 19, 1020-1033.	4.4	10
108	On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence. Physics of Plasmas, 2016, 23, .	1.9	10

#	Article	IF	CITATIONS
109	Spatiotemporal Wavelet Compression for Visualization of Scientific Simulation Data. , 2017, , .		10
110	Generation of turbulence through frontogenesis in sheared stratified flows. Physics of Fluids, 2018, 30, .	4.0	10
111	Invariant manifolds in stratified turbulence. Physical Review Fluids, 2019, 4, .	2.5	10
112	Conformal Invariance in Three-Dimensional Rotating Turbulence. Physical Review Letters, 2011, 106, 204503.	7.8	9
113	Quantifying resonant and near-resonant interactions in rotating turbulence. Journal of Fluid Mechanics, 2016, 809, 821-842.	3.4	9
114	Spatio-temporal behavior of magnetohydrodynamic fluctuations with cross-helicity and background magnetic field. Physics of Plasmas, 2019, 26, .	1.9	9
115	Dynamics of partially thermalized solutions of the Burgers equation. Physical Review Fluids, 2018, 3, .	2.5	9
116	Linear and non-linear features of the Taylor–Green dynamo. Comptes Rendus Physique, 2008, 9, 749-756.	0.9	8
117	Anomalous scaling of passive scalars in rotating flows. Physical Review E, 2011, 83, 066309.	2.1	8
118	Wave turbulence in shallow water models. Physical Review E, 2014, 89, 063025.	2.1	8
119	Clustering of vector nulls in homogeneous isotropic turbulence. Physical Review Fluids, 2021, 6, .	2.5	8
120	A new technique for comparing solar dynamo models and observations. Astronomy and Astrophysics, 2004, 426, 1065-1073.	5.1	8
121	From waves to convection and back again: The phase space of stably stratified turbulence. Physical Review Fluids, 2020, 5, .	2.5	8
122	Study of bi-orthogonal modes in magnetic butterflies. Solar Physics, 2004, 219, 367-378.	2.5	7
123	Description of Maunder-like events from a stochastic Alpha–Omega model. Advances in Space Research, 2006, 38, 856-861.	2.6	7
124	Large-scale effects on the decay of rotating helical and non-helical turbulence. Physica Scripta, 2010, T142, 014003.	2.5	7
125	Decay of Batchelor and Saffman rotating turbulence. Physical Review E, 2012, 86, 066320.	2.1	7
126	Not much helicity is needed to drive large-scale dynamos. Physical Review E, 2012, 85, 066406.	2.1	7

#	Article	IF	CITATIONS
127	Turbulent transport with intermittency: Expectation of a scalar concentration. Physical Review E, 2016, 93, 043120.	2.1	7
128	SIMULATIONS OF THE KELVIN–HELMHOLTZ INSTABILITY DRIVEN BY CORONAL MASS EJECTIONS IN THE TURBULENT CORONA. Astrophysical Journal, 2016, 818, 126.	4.5	7
129	Statistics of single and multiple floaters in experiments of surface wave turbulence. Physical Review Fluids, 2019, 4, .	2.5	7
130	Broken Mirror Symmetry of Tracer's Trajectories in Turbulence. Physical Review Letters, 2021, 127, 254502.	7.8	7
131	Waves, Coriolis Force, and the Dynamo Effect. Astrophysical Journal, 2005, 619, 1014-1018.	4.5	6
132	Connecting large-scale velocity and temperature bursts with small-scale intermittency in stratified turbulence. Europhysics Letters, 2021, 135, 14001.	2.0	6
133	Single-particle dispersion in stably stratified turbulence. Physical Review Fluids, 2018, 3, .	2.5	6
134	Turbulence generation by large-scale extreme vertical drafts and the modulation of local energy dissipation in stably stratified geophysical flows. Physical Review Fluids, 2022, 7, .	2.5	6
135	The role of Hall currents on incompressible magnetic reconnection. Advances in Space Research, 2006, 37, 1287-1291.	2.6	5
136	Cancellation exponents in helical and non-helical flows. Journal of Fluid Mechanics, 2010, 651, 241-250.	3.4	5
137	Magnetic structure, dipole reversals, and 1/f noise in resistive MHD spherical dynamos. Physical Review Fluids, 2018, 3, .	2.5	5
138	Intermittency in the isotropic component of helical and nonhelical turbulent flows. Physical Review E, 2010, 81, 016310.	2.1	4
139	Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold. Physics of Fluids, 2012, 24, 025102.	4.0	4
140	Thermalization and free decay in surface quasigeostrophic flows. Physical Review E, 2012, 86, 016323.	2.1	4
141	Visualization-Driven Structural and Statistical Analysis of Turbulent Flows. Lecture Notes in Computer Science, 2009, , 321-332.	1.3	4
142	Settling and clustering of particles of moderate mass density in turbulence. Physical Review Fluids, 2021, 6, .	2.5	4
143	Lack of universality in MHD turbulence, and the possible emergence of a new paradigm?. Proceedings of the International Astronomical Union, 2010, 6, 304-316.	0.0	3
144	Rotating helical turbulence: three-dimensionalization or self-similarity in the small scales?. Journal of Physics: Conference Series, 2011, 318, 042015.	0.4	3

#	Article	IF	CITATIONS
145	Kelvin-Helmholtz versus Hall magnetoshear instability in astrophysical flows. Physical Review E, 2014, 89, 053105.	2.1	3
146	Vertical dispersion of Lagrangian tracers in fully developed stably stratified turbulence. Physical Review Fluids, 2019, 4, .	2.5	3
147	Numerical simulations of MHD dynamos. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 1865-1871.	1.6	2
148	Two Examples from Geophysical and Astrophysical Turbulence on Modeling Disparate Scale Interactions. Handbook of Numerical Analysis, 2009, , 339-381.	1.8	2
149	Passive scalar cascades in rotating helical and non-helical flows. Physica Scripta, 2013, T155, 014037.	2.5	2
150	Sign cancellation and scaling in the vertical component of velocity and vorticity in rotating turbulence. Physical Review E, 2013, 88, 013011.	2.1	2
151	Helical Turbulence in Fluids and MHD. ERCOFTAC Series, 2015, , 549-559.	0.1	2
152	Passive scalars: Mixing, diffusion, and intermittency in helical and nonhelical rotating turbulence. Physical Review E, 2017, 95, 033103.	2.1	2
153	Empirical mode decomposition of multiphase flows in porous media: characteristic scales and speed of convergence. Petroleum Science, 2020, 17, 153-167.	4.9	2
154	Extraction of invariant manifolds and application to turbulence with a passive scalar. Physical Review E, 2021, 103, 063107.	2.1	2
155	Markov property of Lagrangian turbulence. Europhysics Letters, 2022, 137, 53001.	2.0	2
156	Characterising Single and Two-Phase Homogeneous Isotropic Turbulence with Stagnation Points. Dynamics, 2022, 2, 63-72.	1.2	2
157	Multitime structure functions and the Lagrangian scaling of turbulence. Physical Review Fluids, 2022, 7, .	2.5	2
158	Modelling the generation of magnetic field on the Sun. Physica A: Statistical Mechanics and Its Applications, 2003, 327, 54-58.	2.6	1
159	Effective diffusivity of passive scalars in rotating turbulence. Physical Review E, 2013, 87, 023018.	2.1	1
160	Finite-temperature effects in helical quantum turbulence. Physical Review A, 2018, 97, .	2.5	1
161	Dynamics of the Small Scales in Magnetohydrodynamic Turbulence. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2008, , 305-312.	0.2	1
162	Segmentation and Visualization of Multivariate Features Using Feature-Local Distributions. Lecture Notes in Computer Science, 2011, , 619-628.	1.3	1

#	Article	IF	CITATIONS
163	The effect of subfilter-scale physics on regularization models. ERCOFTAC Series, 2011, , 411-420.	0.1	1
164	Scale Interactions and Non-Local Flux in Hydrodynamic Turbulence. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2008, , 125-130.	0.2	1
165	Vector potential-based MHD solver for non-periodic flows using Fourier continuation expansions. Computer Physics Communications, 2022, 275, 108304.	7.5	1
166	Chronos-Koopman spectral analysis of bidimensional turbulent flows. Experiments in Fluids, 2022, 63, .	2.4	1
167	Toward a dynamo model for the solar tachocline. Physica A: Statistical Mechanics and Its Applications, 2005, 349, 667-674.	2.6	0
168	Numerical simulations of Hall MHD small-scale dynamos. Proceedings of the International Astronomical Union, 2009, 5, 436-437.	0.0	0
169	Publisher's Note: Kelvin-Helmholtz versus Hall magnetoshear instability in astrophysical flows [Phys. Rev. E89, 053105 (2014)]. Physical Review E, 2014, 89, .	2.1	0
170	Modeling of High Reynolds Number Flows with Solid Body Rotation or Magnetic Fields. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2010, , 287-294.	0.3	0