Muhammad Waqas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/889423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. International Journal of Heat and Mass Transfer, 2016, 99, 702-710.	4.8	647
2	A comparative study of Casson fluid with homogeneous-heterogeneous reactions. Journal of Colloid and Interface Science, 2017, 498, 85-90.	9.4	631
3	Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. International Journal of Heat and Mass Transfer, 2016, 102, 766-772.	4.8	412
4	MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects. Journal of Molecular Liquids, 2016, 221, 1097-1103.	4.9	289
5	Cattaneo-Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid. Journal of Molecular Liquids, 2016, 220, 642-648.	4.9	214
6	Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid. Computer Methods in Applied Mechanics and Engineering, 2017, 315, 1011-1024.	6.6	198
7	Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects. International Journal of Heat and Mass Transfer, 2016, 102, 1123-1129.	4.8	196
8	Numerical simulation for magneto Carreau nanofluid model with thermal radiation: A revised model. Computer Methods in Applied Mechanics and Engineering, 2017, 324, 640-653.	6.6	188
9	Entropy generation minimization and binary chemical reaction with Arrhenius activation energy in MHD radiative flow of nanomaterial. Journal of Molecular Liquids, 2018, 259, 274-283.	4.9	154
10	A model of solar radiation and Joule heating in magnetohydrodynamic (MHD) convective flow of thixotropic nanofluid. Journal of Molecular Liquids, 2016, 215, 704-710.	4.9	152
11	Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy. Computer Methods and Programs in Biomedicine, 2020, 190, 105362.	4.7	150
12	Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: A combined approach to good absorber of solar energy and intensification of heat transport. Computer Methods and Programs in Biomedicine, 2020, 186, 105131.	4.7	140
13	Radiative flow of micropolar nanofluid accounting thermophoresis and Brownian moment. International Journal of Hydrogen Energy, 2017, 42, 16821-16833.	7.1	131
14	Entropy generation in flow of Carreau nanofluid. Journal of Molecular Liquids, 2019, 278, 677-687.	4.9	131
15	Transport of magnetohydrodynamic nanomaterial in a stratified medium considering gyrotactic microorganisms. Physica B: Condensed Matter, 2018, 529, 33-40.	2.7	130
16	A mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactions. Journal of Magnetism and Magnetic Materials, 2020, 493, 165646.	2.3	128
17	Magnetohydrodynamic flow of Casson fluid over a stretching cylinder. Results in Physics, 2017, 7, 498-502.	4.1	123
18	Entropy optimized Darcy-Forchheimer nanofluid (Silicon dioxide, Molybdenum disulfide) subject to temperature dependent viscosity. Computer Methods and Programs in Biomedicine, 2020, 190, 105363.	4.7	117

#	Article	IF	CITATIONS
19	Viscous dissipation effect in flow of magnetonanofluid with variable properties. Journal of Molecular Liquids, 2016, 222, 47-54.	4.9	114
20	CVFEM analysis for Fe3O4–H2O nanofluid in an annulus subject to thermal radiation. International Journal of Heat and Mass Transfer, 2019, 132, 473-483.	4.8	105
21	Behavior of stratification phenomenon in flow of Maxwell nanomaterial with motile gyrotactic microorganisms in the presence of magnetic field. International Journal of Mechanical Sciences, 2017, 131-132, 426-434.	6.7	104
22	Investigation of magneto-hydrodynamic fluid squeezed between two parallel disks by considering Joule heating, thermal radiation, and adding different nanoparticles. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 659-680.	2.8	104
23	Stratified flow of an Oldroyd-B nanoliquid with heat generation. Results in Physics, 2017, 7, 2489-2496.	4.1	100
24	Simulation of magnetohydrodynamics and radiative heat transport in convectively heated stratified flow of Jeffrey nanofluid. Journal of Physics and Chemistry of Solids, 2019, 133, 45-51.	4.0	96
25	Impacts of constructive and destructive chemical reactions in magnetohydrodynamic (MHD) flow of Jeffrey liquid due to nonlinear radially stretched surface. Journal of Molecular Liquids, 2017, 225, 302-310.	4.9	95
26	Transportation of radiative energy in viscoelastic nanofluid considering buoyancy forces and convective conditions. Chaos, Solitons and Fractals, 2020, 130, 109415.	5.1	94
27	Modeling and analysis for magnetic dipole impact in nonlinear thermally radiating Carreau nanofluid flow subject to heat generation. Journal of Magnetism and Magnetic Materials, 2019, 485, 197-204.	2.3	91
28	Numerical simulation of hydromagnetic mixed convective radiative slip flow with variable fluid properties: A mathematical model for entropy generation. Journal of Physics and Chemistry of Solids, 2019, 125, 153-164.	4.0	90
29	Outcome for chemically reactive aspect in flow of tangent hyperbolic material. Journal of Molecular Liquids, 2017, 230, 143-151.	4.9	89
30	Significance of nonlinear radiation in mixed convection flow of magneto Walter-B nanoliquid. International Journal of Hydrogen Energy, 2017, 42, 26408-26416.	7.1	89
31	Mathematical modeling of non-Newtonian fluid with chemical aspects: A new formulation and results by numerical technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518, 263-272.	4.7	88
32	Shape effects of Copper-Oxide (CuO) nanoparticles to determine the heat transfer filled in a partially heated rhombus enclosure: CVFEM approach. International Communications in Heat and Mass Transfer, 2019, 107, 14-23.	5.6	88
33	MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface with melting heat transfer. Journal of Molecular Liquids, 2016, 223, 836-844.	4.9	83
34	A modified Fourier approach for analysis of nanofluid heat generation within a semi-circular enclosure subjected to MFD viscosity. International Communications in Heat and Mass Transfer, 2020, 111, 104430.	5.6	83
35	Diffusion of chemically reactive species in third grade fluid flow over an exponentially stretching sheet considering magnetic field effects. Chinese Journal of Chemical Engineering, 2017, 25, 257-263.	3.5	82
36	Mixed Convection Radiative Flow of Maxwell Fluid Near a Stagnation Point with Convective Condition. Journal of Mechanics, 2013, 29, 403-409.	1.4	80

#	Article	IF	CITATIONS
37	Effectiveness of magnetic nanoparticles in radiative flow of Eyring-Powell fluid. Journal of Molecular Liquids, 2017, 231, 126-133.	4.9	80
38	Numerical simulation for nonlinear radiated Eyring-Powell nanofluid considering magnetic dipole and activation energy. International Communications in Heat and Mass Transfer, 2020, 112, 104401.	5.6	80
39	Entropy generation and economic analyses in a nanofluid filled L-shaped enclosure subjected to an oriented magnetic field. Applied Thermal Engineering, 2020, 168, 114789.	6.0	78
40	Mixed convection flow of viscoelastic nanofluid by a cylinder with variable thermal conductivity and heat source/sink. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 214-234.	2.8	77
41	On Cattaneo–Christov double diffusion impact for temperature-dependent conductivity of Powell–Eyring liquid. Chinese Journal of Physics, 2017, 55, 729-737.	3.9	77
42	Chemically reactive flow of Maxwell liquid due to variable thicked surface. International Communications in Heat and Mass Transfer, 2017, 86, 231-238.	5.6	76
43	Numerical simulation for radiative flow of nanoliquid by rotating disk with carbon nanotubes and partial slip. Computer Methods in Applied Mechanics and Engineering, 2018, 341, 397-408.	6.6	76
44	MHD stagnation point flow of Jeffrey fluid by a radially stretching surface with viscous dissipation and Joule heating. Journal of Hydrology and Hydromechanics, 2015, 63, 311-317.	2.0	75
45	Simulation of revised nanofluid model in the stagnation region of cross fluid by expanding-contracting cylinder. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 2193-2205.	2.8	75
46	A theoretical analysis of SWCNT–MWCNT and H2O nanofluids considering Darcy–Forchheimer relation. Applied Nanoscience (Switzerland), 2019, 9, 1183-1191.	3.1	75
47	Evaluating the characteristics of magnetic dipole for shear-thinning Williamson nanofluid with the thermal radiation. Computer Methods and Programs in Biomedicine, 2020, 191, 105396.	4.7	75
48	Stretched flow of Carreau nanofluid with convective boundary condition. Pramana - Journal of Physics, 2016, 86, 3-17.	1.8	74
49	Newtonian heating effect in nanofluid flow by a permeable cylinder. Results in Physics, 2017, 7, 256-262.	4.1	74
50	Nonlinear thermal radiation in flow induced by a slendering surface accounting thermophoresis and Brownian diffusion. European Physical Journal Plus, 2017, 132, 1.	2.6	73
51	Similarity transformation approach for ferromagnetic mixed convection flow in the presence of chemically reactive magnetic dipole. Physics of Fluids, 2016, 28, .	4.0	71
52	Magnetohydrodynamic flow of burgers fluid with heat source and power law heat flux. Chinese Journal of Physics, 2017, 55, 318-330.	3.9	70
53	Impact of heat generation/absorption and homogeneous-heterogeneous reactions on flow of Maxwell fluid. Journal of Molecular Liquids, 2017, 233, 465-470.	4.9	69
54	Investigation of entropy generation in a square inclined cavity using control volume finite element method with aided quadratic Lagrange interpolation functions. International Communications in Heat and Mass Transfer, 2020, 110, 104398.	5.6	69

#	Article	IF	CITATIONS
55	Mixed convection flow of a Burgers nanofluid in the presence of stratifications and heat generation/absorption. European Physical Journal Plus, 2016, 131, 1.	2.6	67
56	On model of Burgers fluid subject to magneto nanoparticles and convective conditions. Journal of Molecular Liquids, 2016, 222, 181-187.	4.9	67
57	Magnetohydrodynamic (MHD) stretched flow of tangent hyperbolic nanoliquid with variable thickness. Journal of Molecular Liquids, 2017, 229, 178-184.	4.9	67
58	Numerical simulation of nonlinear thermal radiation and homogeneous-heterogeneous reactions in convective flow by a variable thicked surface. Journal of Molecular Liquids, 2017, 246, 259-267.	4.9	67
59	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e622" altimg="si3.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> O nanofluids in a partially heated irregular wavy enclosure. Physica A: Statistical Mechanics and Its Applications, 2020, 540.	2.6	67
60	123034. A computational framework for natural convective hydromagnetic flow via inclined cavity: An analysis subjected to entropy generation. Journal of Molecular Liquids, 2019, 287, 110863.	4.9	66
61	Thermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surface. Journal of Molecular Liquids, 2016, 224, 801-810.	4.9	63
62	Simultaneous influences of mixed convection and nonlinear thermal radiation in stagnation point flow of Oldroyd-B fluid towards an unsteady convectively heated stretched surface. Journal of Molecular Liquids, 2016, 224, 811-817.	4.9	63
63	On 2D stratified flow of an Oldroyd-B fluid with chemical reaction: An Application of non-Fourier heat flux theory. Journal of Molecular Liquids, 2016, 223, 566-571.	4.9	63
64	On Cattaneo–Christov heat flux in the flow of variable thermal conductivity Eyring–Powell fluid. Results in Physics, 2017, 7, 446-450.	4.1	63
65	A mathematical framework for peristaltic flow analysis of non-Newtonian Sisko fluid in an undulating porous curved channel with heat and mass transfer effects. Computer Methods and Programs in Biomedicine, 2019, 182, 105040.	4.7	63
66	Salient aspects of entropy generation optimization in mixed convection nanomaterial flow. International Journal of Heat and Mass Transfer, 2018, 126, 1337-1346.	4.8	58
67	A nonlinear mathematical analysis for magneto-hyperbolic-tangent liquid featuring simultaneous aspects of magnetic field, heat source and thermal stratification. Applied Nanoscience (Switzerland), 2020, 10, 4513-4518.	3.1	58
68	Entropy generation of three-dimensional Bödewadt flow of water and hexanol base fluid suspended by \$\$hbox {Fe}_{{{3}}hbox {O}_{{{4}}}\$ and \$\$hbox {MoS}_{{{2}}\$\$ hybrid nanoparticles. Pramana - Journal of Physics, 2021, 95, 1.	1.8	57
69	On doubly stratified chemically reactive flow of Powell–Eyring liquid subject to non-Fourier heat flux theory. Results in Physics, 2017, 7, 99-106.	4.1	56
70	Transport of hybrid type nanomaterials in peristaltic activity of viscous fluid considering nonlinear radiation, entropy optimization and slip effects. Computer Methods and Programs in Biomedicine, 2020, 184, 105086.	4.7	55
71	Chemically reactive flow of upper-convected Maxwell fluid with Cattaneo–Christov heat flux model. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 4571-4578.	1.6	51
72	Three-dimensional mixed convection flow of Sisko nanoliquid. International Journal of Mechanical Sciences, 2017, 133, 273-282.	6.7	49

#	Article	IF	CITATIONS
73	CVFEM simulation for FeO-HO nanofluid in an annulus between two triangular enclosures subjected to magnetic field and thermal radiation. International Communications in Heat and Mass Transfer, 2020, 112, 104449.	5.6	49
74	MHD flow of Jeffrey liquid due to a nonlinear radially stretched sheet in presence of Newtonian heating. Results in Physics, 2016, 6, 817-823.	4.1	48
75	Importance of convective heat transfer in flow of non-Newtonian nanofluid featuring Brownian and thermophoretic diffusions. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4624-4641.	2.8	47
76	Mathematical analysis of thermally radiative time-dependent Sisko nanofluid flow for curved surface. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 3498-3514.	2.8	45
77	Locomotion of an efficient biomechanical sperm through viscoelastic medium. Biomechanics and Modeling in Mechanobiology, 2020, 19, 2271-2284.	2.8	45
78	Numerical simulation for thermal radiation and porous medium characteristics in flow of CuO-H2O nanofluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	43
79	A theoretical nanofluid analysis exhibiting hydromagnetics characteristics employing CVFEM. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	42
80	Flow and Heat Transfer over an Unsteady Stretching Sheet in a Micropolar Fluid with Convective Boundary Condition. Journal of Applied Fluid Mechanics, 2016, 9, 1437-1445.	0.2	42
81	Cilia-driven fluid flow in a curved channel: effects of complex wave and porous medium. Fluid Dynamics Research, 2020, 52, 015514.	1.3	41
82	Electro-osmotically driven generalized Newtonian blood flow in a divergent micro-channel. AEJ - Alexandria Engineering Journal, 2022, 61, 4519-4528.	6.4	41
83	Cross diffusion and exponential space dependent heat source impacts in radiated three-dimensional (3D) flow of Casson fluid by heated surface. Results in Physics, 2018, 8, 1275-1282.	4.1	40
84	Radiative flow of a tangent hyperbolic fluid with convective conditions and chemical reaction. European Physical Journal Plus, 2016, 131, 1.	2.6	39
85	Chemically reactive flow of third grade fluid by an exponentially convected stretching sheet. Journal of Molecular Liquids, 2016, 223, 853-860.	4.9	39
86	Stagnation point flow of hyperbolic tangent fluid with Soret-Dufour effects. Results in Physics, 2017, 7, 2711-2717.	4.1	39
87	Theoretical investigation of peristalsis transport in flow of hyperbolic tangent fluid with slip effects and chemical reaction. Journal of Molecular Liquids, 2019, 285, 314-322.	4.9	39
88	Magneto-hydrodynamical numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface. Physics and Chemistry of Liquids, 2018, 56, 584-595.	1.2	38
89	Bio-inspired propulsion of micro-swimmers within a passive cervix filled with couple stress mucus. Computer Methods and Programs in Biomedicine, 2020, 189, 105313.	4.7	38
90	On the evaluation of stratification based entropy optimized hydromagnetic flow featuring dissipation aspect and Robin conditions. Computer Methods and Programs in Biomedicine, 2020, 190, 105347.	4.7	38

#	Article	IF	CITATIONS
91	Flow of chemically reactive magneto Cross nanoliquid with temperature-dependent conductivity. Applied Nanoscience (Switzerland), 2018, 8, 1453-1460.	3.1	37
92	Nonlinear convection and joule heating impacts in magneto-thixotropic nanofluid stratified flow by convectively heated variable thicked surface. Journal of Molecular Liquids, 2020, 300, 111945.	4.9	37
93	Diffusion of stratification based chemically reactive Jeffrey liquid featuring mixed convection. Surfaces and Interfaces, 2021, 23, 100783.	3.0	37
94	Dynamical interaction effects on soft-bodied organisms in a multi-sinusoidal passage. European Physical Journal Plus, 2021, 136, 1.	2.6	36
95	A study on magneto-hydrodynamic non-Newtonian thermally radiative fluid considering mixed convection impact towards convective stratified surface. International Communications in Heat and Mass Transfer, 2021, 126, 105262.	5.6	36
96	Modeling and analysis of unsteady second-grade nanofluid flow subject to mixed convection and thermal radiation. Soft Computing, 2022, 26, 1033-1042.	3.6	36
97	Entropy optimized stretching flow based on non-Newtonian radiative nanoliquid under binary chemical reaction. Computer Methods and Programs in Biomedicine, 2020, 188, 105274.	4.7	35
98	A theoretical analysis of Biorheological fluid flowing through a complex wavy convergent channel under porosity and electro-magneto-hydrodynamics Effects. Computer Methods and Programs in Biomedicine, 2020, 191, 105413.	4.7	35
99	Mixed convective stagnation point flow of Carreau fluid with variable properties. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 3005-3017.	1.6	34
100	Interaction of heat generation in nonlinear mixed/forced convective flow of Williamson fluid flow subject to generalized Fourier's and Fick's concept. Journal of Materials Research and Technology, 2020, 9, 11080-11086.	5.8	34
101	Magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a stretched surface with homogeneous–heterogeneous reactions. Journal of Theoretical and Computational Chemistry, 2017, 16, 1750022.	1.8	33
102	Simulation of Fe ₃ O ₄ -H ₂ O nanoliquid in a triangular enclosure subjected to Cattaneo–Christov theory of heat conduction. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4430-4444.	2.8	33
103	On the performance of heat absorption/generation and thermal stratification in mixed convective flow of an Oldroyd-B fluid. Nuclear Engineering and Technology, 2017, 49, 1645-1653.	2.3	32
104	An implicit finite difference analysis of magnetic swimmers propelling through non-Newtonian liquid in a complex wavy channel. Computers and Mathematics With Applications, 2020, 79, 2189-2202.	2.7	32
105	Soret and Dufour effects in stretching flow of Jeffrey fluid subject to Newtonian heat and mass conditions. Results in Physics, 2017, 7, 4183-4188.	4.1	31
106	Thermally radiated squeezed flow of magneto-nanofluid between two parallel disks with chemical reaction. Journal of Thermal Analysis and Calorimetry, 2019, 135, 1021-1030.	3.6	31
107	Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux. European Physical Journal Plus, 2016, 131, 1.	2.6	30
108	An improved double diffusion analysis of non-Newtonian chemically reactive fluid in frames of variables properties. International Communications in Heat and Mass Transfer, 2020, 115, 104524.	5.6	29

#	Article	IF	CITATIONS
109	Exploring the features for flow of Oldroyd-B liquid film subjected to rotating disk with homogeneous/heterogeneous processes. Computer Methods and Programs in Biomedicine, 2020, 189, 105323.	4.7	29
110	Activation energy for the Carreau-Yasuda nanomaterial flow: Analysis of the entropy generation over a porous medium. Journal of Molecular Liquids, 2020, 297, 111905.	4.9	28
111	Von Kármán swirling analysis for modeling Oldroyd-B nanofluid considering cubic autocatalysis. Physica Scripta, 2020, 95, 015206.	2.5	28
112	Importance of Darcy-Forchheimer relation in chemically reactive radiating flow towards convectively heated surface. Journal of Molecular Liquids, 2017, 248, 1071-1077.	4.9	27
113	Arrhenius activation energy aspects in mixed convection Carreau nanofluid with nonlinear thermal radiation. Applied Nanoscience (Switzerland), 2020, 10, 4403-4413.	3.1	27
114	Application of non-Fourier heat flux theory in thermally stratified flow of second grade liquid with variable properties. Chinese Journal of Physics, 2017, 55, 230-241.	3.9	26
115	On entropy generation effectiveness in flow of power law fluid with cubic autocatalytic chemical reaction. Applied Nanoscience (Switzerland), 2019, 9, 1205-1214.	3.1	26
116	The role of γAl2O3â~'H2O and γAl2O3â~'C2H6O2 nanomaterials in Darcy-Forchheimer stagnation point flow: An analysis using entropy optimization. International Journal of Thermal Sciences, 2019, 140, 20-27.	4.9	26
117	Chemically reactive flow of micropolar fluid accounting viscous dissipation and Joule heating. Results in Physics, 2017, 7, 3706-3715.	4.1	25
118	Impact of chemical reaction in fully developed radiated mixed convective flow between two rotating disk. Physica B: Condensed Matter, 2018, 538, 138-149.	2.7	25
119	Mixed Convection Stagnation-Point Flow of Powell-Eyring Fluid with Newtonian Heating, Thermal Radiation, and Heat Generation/Absorption. Journal of Aerospace Engineering, 2017, 30, 04016077.	1.4	24
120	Effectiveness of radiative heat flux in MHD flow of Jeffrey-nanofluid subject to Brownian and thermophoresis diffusions. Journal of Hydrodynamics, 2019, 31, 421-427.	3.2	24
121	Darcy–Forchheimer stratified flow of viscoelastic nanofluid subjected to convective conditions. Applied Nanoscience (Switzerland), 2019, 9, 2031-2037.	3.1	23
122	Heat generation in mixed convected Williamson liquid stretching flow under generalized Fourier concept. Applied Nanoscience (Switzerland), 2020, 10, 4439-4444.	3.1	23
123	Analysis of forced convective modified Burgers liquid flow considering Cattaneo-Christov double diffusion. Results in Physics, 2018, 8, 908-913.	4.1	22
124	MHD stratified nanofluid flow by slandering surface. Physica Scripta, 2018, 93, 115701.	2.5	22
125	Effectiveness of Darcy-Forchheimer and nonlinear mixed convection aspects in stratified Maxwell nanomaterial flow induced by convectively heated surface. Applied Mathematics and Mechanics (English Edition), 2018, 39, 1373-1384.	3.6	22
126	Interaction of thermal radiation in hydromagnetic viscoelastic nanomaterial subject to gyrotactic microorganisms. Applied Nanoscience (Switzerland), 2019, 9, 1193-1204.	3.1	22

#	Article	IF	CITATIONS
127	Numerical Simulation for Magneto Nanofluid Flow Through a Porous Space with Melting Heat Transfer. Microgravity Science and Technology, 2018, 30, 265-275.	1.4	21
128	Homotopic solutions for stagnation point flow of third-grade nanoliquid subject to magnetohydrodynamics. Results in Physics, 2017, 7, 4310-4317.	4.1	20
129	Numerical simulation for activation energy impact in Darcy–Forchheimer nanofluid flow by impermeable cylinder with thermal radiation. Applied Nanoscience (Switzerland), 2019, 9, 1173-1182.	3.1	20
130	Thermo-solutal Robin conditions significance in thermally radiative nanofluid under stratification and magnetohydrodynamics. European Physical Journal: Special Topics, 2021, 230, 1307-1316.	2.6	20
131	Investigation of second grade fluid through temperature dependent thermal conductivity and non-Fourier heat flux. Results in Physics, 2018, 9, 871-878.	4.1	17
132	Bidirectional Williamson nanofluid flow towards stretchable surface with modified Darcy's law. Surfaces and Interfaces, 2021, 23, 100872.	3.0	17
133	Impact of variable thermal conductivity in doubly stratified chemically reactive flow subject to non-Fourier heat flux theory. Journal of Molecular Liquids, 2017, 234, 444-451.	4.9	16
134	Influence of thermal radiation and chemical reaction in mixed convection stagnation point flow of Carreau fluid. Results in Physics, 2017, 7, 4058-4064.	4.1	16
135	Simulation of nonlinear convective thixotropic liquid with Cattaneo-Christov heat flux. Results in Physics, 2018, 8, 1023-1027.	4.1	16
136	Magnetic field influence in three-dimensional rotating micropolar nanoliquid with convective conditions. Computer Methods and Programs in Biomedicine, 2020, 189, 105324.	4.7	16
137	MHD stagnation point flow accounting variable thickness and slip conditions. Colloid and Polymer Science, 2017, 295, 1201-1209.	2.1	15
138	Effect of Nonlinear Convection on Stratified Flow of Third Grade Fluid with Revised Fourier-Fick Relations. Communications in Theoretical Physics, 2018, 70, 025.	2.5	15
139	Evaluation of Arrhenius activation energy and new mass flux condition in Carreau nanofluid: dual solutions. Applied Nanoscience (Switzerland), 2020, 10, 5279-5289.	3.1	15
140	Theoretical investigation of the doubly stratified flow of an Eyring-Powell nanomaterial via heat generation/absorption. European Physical Journal Plus, 2017, 132, 1.	2.6	14
141	Importance of chemical reactions in flow of Walter-B liquid subject to non-Fourier flux modeling. Journal of Molecular Liquids, 2017, 238, 229-235.	4.9	13
142	Entropy optimization in cubic autocatalysis chemical reactive flow of Williamson fluid subjected to viscous dissipation and uniform magnetic field. Journal of Central South University, 2019, 26, 1218-1232.	3.0	13
143	A non-linear mathematical analysis of thermally radiative stratified nanoliquid featuring the aspects of magnetic field, Robin conditions and thermal radiation. International Communications in Heat and Mass Transfer, 2021, 125, 105199.	5.6	13
144	Stagnation point flow of third-grade liquid due to variable thickness: A useful application to non-Fourier heat flux approach. Results in Physics, 2018, 8, 1010-1016.	4.1	12

#	Article	IF	CITATIONS
145	Effectiveness of improved Fourier-Fick laws in a stratified non-Newtonian fluid with variable fluid characteristics. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 2128-2145.	2.8	12
146	A shear-rate-dependent flow generated via magnetically controlled metachronal motion of artificial cilia. Biomechanics and Modeling in Mechanobiology, 2020, 19, 1713-1724.	2.8	12
147	Further analysis of double-diffusive flow of nanofluid through a porous medium situated on an inclined plane: Al-based Levenberg–Marquardt scheme with backpropagated neural network. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	1.6	12
148	Radiative flow of hyperbolic tangent liquid subject to Joule heating. Results in Physics, 2017, 7, 2197-2203.	4.1	11
149	Newtonian heat and mass conditions impact in thermally radiated Maxwell nanofluid Darcy–Forchheimer flow with heat generation. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 2809-2821.	2.8	11
150	Modeling and analysis of von KÃirmÃin swirling flow for Oldroyd-B nanofluid featuringÂchemical processes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	11
151	On non-Fourier flux in nonlinear stretching flow of hyperbolic tangent material. Neural Computing and Applications, 2019, 31, 597-605.	5.6	11
152	Role of dipole interactions in Darcy–Forchheimer first-order velocity slip nanofluid flow of Williamson model with Robin conditions. Applied Nanoscience (Switzerland), 2020, 10, 5343-5350.	3.1	11
153	Mechanism of chemical aspect in ferromagnetic flow of second grade liquid. Results in Physics, 2017, 7, 4162-4167.	4.1	10
154	Application of improved Fourier's and Fick's laws in a non-Newtonian fluid with temperature-dependent thermal conductivity. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	1.6	10
155	Peristalsis of carbon nanotubes with radiative heat flux. Applied Nanoscience (Switzerland), 2020, 10, 347-357.	3.1	10
156	Nonlinear Mixed Convection Impact on Radiated Flow of Nanomaterials Subject to Convective Conditions. Arabian Journal for Science and Engineering, 2021, 46, 2349-2359.	3.0	10
157	Stability analysis and modeling for the three-dimensional Darcy-Forchheimer stagnation point nanofluid flow towards a moving surface. Applied Mathematics and Mechanics (English Edition), 2021, 42, 357-370.	3.6	10
158	The onset of modified Fourier and Fick's theories in temperature-dependent conductivity flow of micropolar liquid. Results in Physics, 2017, 7, 3145-3152.	4.1	9
159	Magnetohydrodynamic stagnation point flow of third-grade liquid toward variable sheet thickness. Neural Computing and Applications, 2018, 30, 2417-2423.	5.6	9
160	Modeling and analysis of Maxwell nanofluid considering mixed convection and Darcy–Forchheimer relation. Applied Nanoscience (Switzerland), 2019, 9, 1155-1162.	3.1	9
161	Numerical simulation for MHD Darcy–Forchheimer three-dimensional stagnation point flow by a rotating disk with activation energy and partial slip. Applied Nanoscience (Switzerland), 2020, 10, 5469-5477.	3.1	9
162	Unsteady stagnation point flow of Oldroyd-B nanofluid with heat generation/absorption and nonlinear thermal radiation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	1.6	8

#	Article	IF	CITATIONS
163	A theoretical investigation for mixed convection impact in non-Newtonian nanofluid stratified flow subjected to magnetic field. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 2948-2963.	2.8	8
164	Transport of Jeffrey nanomaterial in cubic autocatalytic chemically nonlinear radiated flow with entropy generation. Applied Nanoscience (Switzerland), 2020, 10, 3011-3019.	3.1	8
165	Analytical evaluation of Oldroyd-B nanoliquid under thermo-solutal Robin conditions and stratifications. Computer Methods and Programs in Biomedicine, 2020, 196, 105474.	4.7	8
166	Visualization of stratification based Eyring–Powell material flow capturing nonlinear convectionÂeffects. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2577-2584.	3.6	8
167	Software Reverse Engineering to Requirement Engineering for Evolution of Legacy System. , 2015, , .		7
168	Stagnation point flow of nanomaterial towards nonlinear stretching surface with melting heat. Neural Computing and Applications, 2018, 30, 509-518.	5.6	7
169	OHAM analysis for dissipative viscoelastic nanofluid considering entropy generation and activation energy. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4807-4825.	2.8	7
170	Framing the novel aspects of irreversibilty in MHD flow of Williamson nanomaterial with thermal radiation near stagnation point. Journal of Thermal Analysis and Calorimetry, 2020, 139, 1291-1299.	3.6	7
171	An improved Darcian analysis for chemically reacted Maxwell liquid toward convectively heated moving surface with magnetohydrodynamics. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2069-2074.	3.6	7
172	Melting heat transfer in stagnation point of Carreau fluid with nonlinear thermal radiation and heat source. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	1.6	6
173	A generalized Fourier and Fick's perspective for stretching flow of burgers fluid with temperature-dependent thermal conductivity. Thermal Science, 2019, 23, 3425-3432.	1.1	6
174	Porosity effects on the peristaltic flow of biological fluid in a complex wavy channel. Pramana - Journal of Physics, 2022, 96, 1.	1.8	6
175	Rheology of mixed convective Casson nanofluid in a convectively heated stratified medium. Applied Nanoscience (Switzerland), 2020, 10, 3227-3233.	3.1	5
176	Numerical modeling and analysis of non-Newtonian nanofluid featuring activation energy. Applied Nanoscience (Switzerland), 2020, 10, 3183-3192.	3.1	4
177	Double stratfied flow of nanofluid subject to temperature based thermal conductivity and heat source. Thermal Science, 2020, 24, 1157-1171.	1.1	4
178	Entropy optimization in Ag-H2O and Cu-H2O nanomaterial flow with cubic autocatalysis chemical reaction. European Physical Journal Plus, 2019, 134, 1.	2.6	3
179	Simulation of nanofluid thermal radiation in Marangoni convection flow of non-Newtonian fluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 2840-2853.	2.8	3
180	A theoretical and comparative analysis of γAl2O3–H2O and γAl2O3–C2H6O2 nanoparticles with entropy generation and nonlinear radiation. Applied Nanoscience (Switzerland), 2019, 9, 1227-1238.	3.1	3

Muhammad Waqas

#	Article	IF	CITATIONS
181	Convective stratified flow of magnetized Eyring–Powell (EP) nanofluid by a stretching cylinder. Applied Nanoscience (Switzerland), 2020, 10, 5401-5408.	3.1	3
182	Transportation and analysis of hybrid nanomaterial (graphene oxide, copper) in radiated Darcy–Forchheimer flow with entropy optimization. International Journal of Modern Physics B, 2020, 34, 2050193.	2.0	3
183	Activation energy analysis in entropy optimized reactive flow. Applied Nanoscience (Switzerland), 2020, 10, 2673-2683.	3.1	3
184	Significance of improved Fourier-Fick laws in non-linear convective micropolar material stratified flow with variable properties. Thermal Science, 2019, 23, 3809-3815.	1.1	3
185	Application of Levenberg–Marquardt technique for electrical conducting fluid subjected to variable viscosity. Indian Journal of Physics, 2022, 96, 3901-3919.	1.8	3
186	Entropy generation analysis for the radiative flow of Sisko nanofluid with heat sink/source. Waves in Random and Complex Media, 0, , 1-17.	2.7	3
187	Multiband Multi-rate Narrowband Software Defined Radio waveform based on CPM. , 2020, , .		2
188	Visualization of non-linear convective Williamson liquid based on generalized heat-mass theories. Physica Scripta, 2021, 96, 015218.	2.5	2
189	Characterization of magnetized CNT-based hybrid nanofluid subjected to convective phenomenon. International Journal of Modern Physics B, 0, , .	2.0	2
190	A comprehensive note on thermally stratified flow and non-Fourier heat flux theory. Thermal Science, 2019, 23, 3401-3410.	1.1	2
191	Rheology of magneto-micropolar nanoliquid toward radiative exponential surface subjected to Brownian motion, thermal radiation, thermophoresis and viscous dissipation. Waves in Random and Complex Media, 0, , 1-15.	2.7	2
192	Nonlinear convection flow of micropolar liquid: an application of improved Fourier's expression. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	1.6	1
193	On stratified variable thermal conductivity stretched flow of Walter-B material subject to non-Fourier flux theory. Neural Computing and Applications, 2019, 31, 199-205.	5.6	1
194	Characterization of thermal-dependent conductivity in Cattaneo–Christov (CC)-based buoyancy-driven incompressible flow. Applied Nanoscience (Switzerland), 2020, 10, 5441-5447.	3.1	1
195	Thermally radiative couple-stress magnetized liquid featuring Newtonian heating. Waves in Random and Complex Media, 0, , 1-12.	2.7	1
196	Mathematical modelling and analysis of gravitational collapse in curved geometry. Computer Methods and Programs in Biomedicine, 2020, 184, 105283.	4.7	0
197	Corrigendum to "Transport of hybrid type nanomaterials in peristaltic activity of viscous fluid considering nonlinear radiation, entropy optimization and slip effects―[Computer methods and programs in biomedicine 184 (2020) 105,086]. Computer Methods and Programs in Biomedicine, 2020, 190. 105252.	4.7	0
198	Rheology of hydromagnetic viscoelastic fluid subjected to dissipation aspect. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 1110-1123.	2.8	0

#	Article	IF	CITATIONS
199	Darcy-Forchheimer characteristics of viscoelastic stratified nanoliquid by convectively heated permeable surface. Thermal Science, 2021, 25, 1057-1065.	1.1	0
200	Numerical and analytical solutions for unsteady nanofluid flow capturing magneto-hydrodynamic and radiation effects. Waves in Random and Complex Media, 0, , 1-21.	2.7	0