Joseph C Reese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8894002/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Subset of TAFIIs Are Integral Components of the SAGA Complex Required for Nucleosome Acetylation and Transcriptional Stimulation. Cell, 1998, 94, 45-53.	28.9	411
2	Transcription activation in cells lacking TAFIIs. Nature, 1996, 383, 185-188.	27.8	241
3	Yeast TAF IIS in a multisubunit complex required for activated transcription. Nature, 1994, 371, 523-527.	27.8	163
4	Ccr4-Not complex: the control freak of eukaryotic cells. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47, 315-333.	5.2	161
5	The multifunctional Ccr4–Not complex directly promotes transcription elongation. Genes and Development, 2011, 25, 581-593.	5.9	144
6	Yeast TAFII145 Required for Transcription of G1/S Cyclin Genes and Regulated by the Cellular Growth State. Cell, 1997, 90, 607-614.	28.9	143
7	Histone Deacetylases RPD3 and HOS2 Regulate the Transcriptional Activation of DNA Damage-Inducible Genes. Molecular and Cellular Biology, 2007, 27, 3199-3210.	2.3	100
8	Redundant Mechanisms Are Used by Ssn6-Tup1 in Repressing Chromosomal Gene Transcription in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 39240-39250.	3.4	81
9	SWI/SNF-dependent chromatin remodeling of RNR3 requires TAFIIs and the general transcription machinery. Genes and Development, 2003, 17, 502-515.	5.9	74
10	Ssn6–Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. EMBO Journal, 2004, 23, 2246-2257.	7.8	74
11	Ssn6-Tup1 Regulates RNR3 by Positioning Nucleosomes and Affecting the Chromatin Structure at the Upstream Repression Sequence. Journal of Biological Chemistry, 2001, 276, 33788-33797.	3.4	67
12	The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome. Nucleic Acids Research, 2017, 45, 6362-6374.	14.5	60
13	Basal transcription factors. Current Opinion in Genetics and Development, 2003, 13, 114-118.	3.3	51
14	Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. Journal of Biological Chemistry, 2016, 291, 9853-9870.	3.4	49
15	Intermolecular Interactions within the Abundant DEAD-box Protein Dhh1 Regulate Its Activity in Vivo. Journal of Biological Chemistry, 2011, 286, 27454-27470.	3.4	47
16	Ccr4-Not and TFIIS Function Cooperatively To Rescue Arrested RNA Polymerase II. Molecular and Cellular Biology, 2015, 35, 1915-1925.	2.3	47
17	The control of elongation by the yeast Ccr4–Not complex. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 127-133.	1.9	41
18	Analysis of TAF90 Mutants Displaying Allele-Specific and Broad Defects in Transcription. Molecular and Cellular Biology, 2001, 21, 7331-7344.	2.3	39

JOSEPH C REESE

#	Article	IF	CITATIONS
19	Identification of a Yeast Transcription Factor IID Subunit, TSG2/TAF48. Journal of Biological Chemistry, 2000, 275, 17391-17398.	3.4	38
20	Molecular Genetic Analysis of the Yeast Repressor Rfx1/Crt1 Reveals a Novel Two-Step Regulatory Mechanism. Molecular and Cellular Biology, 2005, 25, 7399-7411.	2.3	35
21	The Rpb4/7 Module of RNA Polymerase II Is Required for Carbon Catabolite Repressor Protein 4-Negative on TATA (Ccr4-Not) Complex to Promote Elongation. Journal of Biological Chemistry, 2014, 289, 33125-33130.	3.4	32
22	Derepression of DNA damage-regulated genes requires yeast TAFIIs. EMBO Journal, 2000, 19, 4091-4100.	7.8	30
23	An Essential Role for the Saccharomyces cerevisiae DEAD-Box Helicase DHH1 in G1/S DNA-Damage Checkpoint Recovery. Genetics, 2004, 167, 21-33.	2.9	30
24	Yeast Rap1 contributes to genomic integrity by activating DNA damage repair genes. EMBO Journal, 2008, 27, 1575-1584.	7.8	30
25	Exposing the core promoter is sufficient to activate transcription and alter coactivator requirement at RNR3. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8833-8838.	7.1	29
26	Genome-Wide Mapping of Decay Factor–mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3: Genes, Genomes, Genetics, 2018, 8, 315-330.	1.8	27
27	Ccr4–Not maintains genomic integrity by controlling the ubiquitylation and degradation of arrested RNAPII. Genes and Development, 2019, 33, 705-717.	5.9	23
28	Single-molecule FRET method to investigate the dynamics of transcription elongation through the nucleosome by RNA polymerase II. Methods, 2019, 159-160, 51-58.	3.8	19
29	Dissection of Coactivator Requirement at RNR3 Reveals Unexpected Contributions from TFIID and SAGA. Journal of Biological Chemistry, 2008, 283, 27360-27368.	3.4	17
30	Set2-Dependent K36 Methylation Is Regulated by Novel Intratail Interactions within H3. Molecular and Cellular Biology, 2009, 29, 6413-6426.	2.3	16
31	Isolation of Yeast Nuclei and Micrococcal Nuclease Mapping of Nucleosome Positioning. , 2006, 313, 245-256.		15
32	Functional Analysis of TFIID Components Using Conditional Mutants. Methods in Enzymology, 2003, 370, 415-430.	1.0	12
33	Genetic analysis of TAF68/61 reveals links to cell cycle regulators. Yeast, 2001, 18, 1197-1205.	1.7	11
34	Isolation of Highly Purified Yeast Nuclei for Nuclease Mapping of Chromatin Structure. Methods in Molecular Biology, 2008, 463, 43-53.	0.9	5
35	Biochemical methods to characterize RNA polymerase II elongation complexes. Methods, 2019, 159-160, 70-81.	3.8	4
36	DEF1: Much more than an RNA polymerase degradation factor. DNA Repair, 2021, 107, 103202.	2.8	4

JOSEPH C REESE

#	Article	IF	CITATIONS
37	Analysis of RNAPII complexes. Methods, 2019, 159-160, 1-3.	3.8	1
38	Histone Deacetylases RPD3 and HOS2 Regulate the Transcriptional Activation of DNA Damage-Inducible Genes. Molecular and Cellular Biology, 2008, 28, 1427-1427.	2.3	0
39	Regulation of tRNA synthesis and modification in physiological conditions and disease. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 283-284.	1.9	Ο
40	Ccr4â€Not complex directly regulates transcription elongation. FASEB Journal, 2010, 24, 186.2.	0.5	0
41	Roles of the yeast Ccr4â€Not complex in regulating transcription. FASEB Journal, 2010, 24, 833.8.	0.5	0
42	The histone H2A Nâ€ŧerminal tail regulates H2B monoubiquitylation and H3 K4 methylation via a novel trans tail pathway. FASEB Journal, 2010, 24, 457.8.	0.5	0