
## James C Carrington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8890978/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | microRNA-Directed Phasing during Trans-Acting siRNA Biogenesis in Plants. Cell, 2005, 121, 207-221.                                                  | 13.5 | 2,091     |
| 2  | Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463, 763-768.                                               | 13.7 | 1,685     |
| 3  | Control of leaf morphogenesis by microRNAs. Nature, 2003, 425, 257-263.                                                                              | 13.7 | 1,676     |
| 4  | Role of MicroRNAs in Plant and Animal Development. Science, 2003, 301, 336-338.                                                                      | 6.0  | 1,659     |
| 5  | A uniform system for microRNA annotation. Rna, 2003, 9, 277-279.                                                                                     | 1.6  | 1,620     |
| 6  | Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA. Science, 2002, 297, 2053-2056.                                     | 6.0  | 1,503     |
| 7  | Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.                                 | 13.7 | 1,405     |
| 8  | Genetic and Functional Diversification of Small RNA Pathways in Plants. PLoS Biology, 2004, 2, e104.                                                 | 2.6  | 1,347     |
| 9  | Criteria for Annotation of Plant MicroRNAs. Plant Cell, 2008, 20, 3186-3190.                                                                         | 3.1  | 1,158     |
| 10 | Role of transposable elements in heterochromatin and epigenetic control. Nature, 2004, 430, 471-476.                                                 | 13.7 | 1,103     |
| 11 | High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of<br>MIRNA Genes. PLoS ONE, 2007, 2, e219.               | 1.1  | 1,100     |
| 12 | Genome Streamlining in a Cosmopolitan Oceanic Bacterium. Science, 2005, 309, 1242-1245.                                                              | 6.0  | 1,034     |
| 13 | P1/HC-Pro, a Viral Suppressor of RNA Silencing, Interferes with Arabidopsis Development and miRNA<br>Function. Developmental Cell, 2003, 4, 205-217. | 3.1  | 874       |
| 14 | Endogenous and Silencing-Associated Small RNAs in Plants[W]. Plant Cell, 2002, 14, 1605-1619.                                                        | 3.1  | 821       |
| 15 | Hierarchical Action and Inhibition of Plant Dicer-Like Proteins in Antiviral Defense. Science, 2006, 313, 68-71.                                     | 6.0  | 818       |
| 16 | The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 2011, 43, 476-481.                                | 9.4  | 814       |
| 17 | A Counterdefensive Strategy of Plant Viruses. Cell, 1998, 95, 461-470.                                                                               | 13.5 | 749       |
| 18 | Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation. Cell, 2008, 133, 128-141.                  | 13.5 | 712       |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Evolution and Functional Diversification of <i>MIRNA</i> Genes. Plant Cell, 2011, 23, 431-442.                                                                                                                                              | 3.1 | 645       |
| 20 | Specialization and evolution of endogenous small RNA pathways. Nature Reviews Genetics, 2007, 8,<br>884-896.                                                                                                                                | 7.7 | 631       |
| 21 | Expression of Arabidopsis MIRNA Genes. Plant Physiology, 2005, 138, 2145-2154.                                                                                                                                                              | 2.3 | 626       |
| 22 | Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nature Genetics, 2004, 36, 1282-1290.                                                                                                 | 9.4 | 561       |
| 23 | Repression of <i>AUXIN RESPONSE FACTOR10</i> by microRNA160 is critical for seed germination and postâ€germination stages. Plant Journal, 2007, 52, 133-146.                                                                                | 2.8 | 548       |
| 24 | Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA Affects Developmental Timing and Patterning in Arabidopsis. Current Biology, 2006, 16, 939-944.                                                                                       | 1.8 | 545       |
| 25 | Negative Feedback Regulation of Dicer-Like1 in Arabidopsis by microRNA-Guided mRNA Degradation.<br>Current Biology, 2003, 13, 784-789.                                                                                                      | 1.8 | 537       |
| 26 | PRG-1 and 21U-RNAs Interact to Form the piRNA Complex Required for Fertility in C. elegans. Molecular Cell, 2008, 31, 67-78.                                                                                                                | 4.5 | 528       |
| 27 | DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in<br>Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of<br>America, 2005, 102, 12984-12989. | 3.3 | 509       |
| 28 | Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes and Development, 2004, 18, 1179-1186.                                                                                                           | 2.7 | 500       |
| 29 | Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses Plant Cell, 1997, 9, 859-868.                                                              | 3.1 | 496       |
| 30 | RNA Silencing Genes Control de Novo DNA Methylation. Science, 2004, 303, 1336-1336.                                                                                                                                                         | 6.0 | 484       |
| 31 | Genome-Wide Profiling and Analysis of Arabidopsis siRNAs. PLoS Biology, 2007, 5, e57.                                                                                                                                                       | 2.6 | 473       |
| 32 | Cell-to-Cell and Long-Distance Transport of Viruses in Plants Plant Cell, 1996, 8, 1669-1681.                                                                                                                                               | 3.1 | 469       |
| 33 | Silencing on the Spot. Induction and Suppression of RNA Silencing in the Agrobacterium-Mediated<br>Transient Expression System. Plant Physiology, 2001, 126, 930-938.                                                                       | 2.3 | 469       |
| 34 | <i>Arabidopsis</i> RNA-Dependent RNA Polymerases and Dicer-Like Proteins in Antiviral Defense and<br>Small Interfering RNA Biogenesis during <i>Turnip Mosaic Virus</i> Infection Â. Plant Cell, 2010, 22,<br>481-496.                      | 3.1 | 454       |
| 35 | Distinct Argonaute-Mediated 22G-RNA Pathways Direct Genome Surveillance in the C. elegans Germline.<br>Molecular Cell, 2009, 36, 231-244.                                                                                                   | 4.5 | 449       |
| 36 | Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target<br>transcripts in Arabidopsis. Nature Structural and Molecular Biology, 2010, 17, 997-1003.                                                  | 3.6 | 448       |

| #  | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO<br>Journal, 2006, 25, 2768-2780.                                                                                                                                                  | 3.5 | 440       |
| 38 | Sequence and Expression Differences Underlie Functional Specialization of Arabidopsis MicroRNAs miR159 and miR319. Developmental Cell, 2007, 13, 115-125.                                                                                                                             | 3.1 | 399       |
| 39 | Genome-Wide Analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 Pathway in Arabidopsis<br>Reveals Dependency on miRNA- and tasiRNA-Directed Targeting. Plant Cell, 2007, 19, 926-942.                                                                                           | 3.1 | 381       |
| 40 | Nuclear transport of plant potyviral proteins Plant Cell, 1990, 2, 987-998.                                                                                                                                                                                                           | 3.1 | 359       |
| 41 | Pattern formation via small RNA mobility. Genes and Development, 2009, 23, 549-554.                                                                                                                                                                                                   | 2.7 | 358       |
| 42 | Loss-of-Susceptibility Mutants of Arabidopsis thaliana Reveal an Essential Role for eIF(iso)4E during<br>Potyvirus Infection. Current Biology, 2002, 12, 1046-1051.                                                                                                                   | 1.8 | 357       |
| 43 | Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO Journal, 1997, 16, 4049-4059.                                                                                                                          | 3.5 | 356       |
| 44 | Small RNA Duplexes Function as Mobile Silencing Signals Between Plant Cells. Science, 2010, 328, 912-916.                                                                                                                                                                             | 6.0 | 323       |
| 45 | Small RNAs serve as a genetic buffer against genomic shock in <i>Arabidopsis</i> interspecific hybrids<br>and allopolyploids. Proceedings of the National Academy of Sciences of the United States of America,<br>2009, 106, 17835-17840.                                             | 3.3 | 320       |
| 46 | Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13401-13406.                                                           | 3.3 | 308       |
| 47 | Role of Arabidopsis ARGONAUTE4 in RNA-Directed DNA Methylation Triggered by Inverted Repeats.<br>Current Biology, 2004, 14, 1214-1220.                                                                                                                                                | 1.8 | 285       |
| 48 | Antiviral roles of plant ARGONAUTES. Current Opinion in Plant Biology, 2015, 27, 111-117.                                                                                                                                                                                             | 3.5 | 270       |
| 49 | Long-distance movement factor: a transport function of the potyvirus helper component proteinase<br>Plant Cell, 1995, 7, 549-559.                                                                                                                                                     | 3.1 | 269       |
| 50 | Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the<br>Viral Protein P3N-PIPO. PLoS Pathogens, 2010, 6, e1000962.                                                                                                                         | 2.1 | 264       |
| 51 | Simultaneous <scp>CRISPR</scp> /Cas9â€mediated editing of cassava <i><scp>elF</scp>4E</i> isoforms<br><i><scp>nCBP</scp>â€I</i> and <i><scp>nCBP</scp>â€2</i> reduces cassava brown streak disease symptom<br>severity and incidence. Plant Biotechnology Journal, 2019, 17, 421-434. | 4.1 | 256       |
| 52 | Identification and Characterization of Human Cytomegalovirus-Encoded MicroRNAs. Journal of Virology, 2005, 79, 12095-12099.                                                                                                                                                           | 1.5 | 252       |
| 53 | Functional Analysis of Three <i>Arabidopsis</i> ARGONAUTES Using Slicer-Defective Mutants Â. Plant<br>Cell, 2012, 24, 3613-3629.                                                                                                                                                      | 3.1 | 249       |
| 54 | Expression and Function of Potyviral Gene Products. Annual Review of Phytopathology, 1988, 26, 123-143.                                                                                                                                                                               | 3.5 | 248       |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | miRNA Target Prediction in Plants. Methods in Molecular Biology, 2010, 592, 51-57.                                                                                                                                                                            | 0.4 | 246       |
| 56 | Capsid Protein Determinants Involved in Cell-to-Cell and Long Distance Movement of Tobacco Etch<br>Potyvirus. Virology, 1995, 206, 1007-1016.                                                                                                                 | 1.1 | 239       |
| 57 | MicroRNA Gene Evolution in <i>Arabidopsis lyrata</i> and <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2010, 22, 1074-1089.                                                                                                                                    | 3.1 | 234       |
| 58 | Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10208-10212.                                     | 3.3 | 232       |
| 59 | Cell-to-Cell and Long-Distance Transport of Viruses in Plants. Plant Cell, 1996, 8, 1669.                                                                                                                                                                     | 3.1 | 214       |
| 60 | Genome Amplification and Long-Distance Movement Functions Associated with the Central Domain of<br>Tobacco Etch Potyvirus Helper Component–Proteinase. Virology, 1997, 228, 251-262.                                                                          | 1.1 | 214       |
| 61 | Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in<br>Arabidopsis. Nucleic Acids Research, 2010, 38, 3081-3093.                                                                                                      | 6.5 | 213       |
| 62 | A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 3391-3395.                           | 3.3 | 210       |
| 63 | A Versatile Phenotyping System and Analytics Platform Reveals Diverse Temporal Responses to Water<br>Availability in Setaria. Molecular Plant, 2015, 8, 1520-1535.                                                                                            | 3.9 | 202       |
| 64 | Small Nuclear Inclusion Protein Encoded by a Plant Potyvirus Genome Is a Protease. Journal of Virology, 1987, 61, 2540-2548.                                                                                                                                  | 1.5 | 199       |
| 65 | Green-fluorescent protein fusions for efficient characterization of nuclear targeting. Plant Journal, 1997, 11, 573-586.                                                                                                                                      | 2.8 | 194       |
| 66 | Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 489-494.                                         | 3.3 | 193       |
| 67 | Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA<br>and a group of positive-strand RNA plant viruses Proceedings of the National Academy of Sciences of<br>the United States of America, 1991, 88, 10647-10651. | 3.3 | 192       |
| 68 | The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology, 1991, 185, 527-535.                                                                                                              | 1.1 | 192       |
| 69 | Transcription Factors in Light and Circadian Clock Signaling Networks Revealed by Genomewide<br>Mapping of Direct Targets for Neurospora White Collar Complex. Eukaryotic Cell, 2010, 9, 1549-1556.                                                           | 3.4 | 187       |
| 70 | Arabidopsis <i>RTM1</i> and <i>RTM2</i> Genes Function in Phloem to Restrict Long-Distance<br>Movement of Tobacco Etch Virus. Plant Physiology, 2001, 127, 1667-1675.                                                                                         | 2.3 | 186       |
| 71 | Long-Distance Movement and Replication Maintenance Functions Correlate with Silencing Suppression Activity of Potyviral HC-Pro. Virology, 2001, 285, 71-81.                                                                                                   | 1.1 | 180       |
| 72 | AGO1-miR173 complex initiates phased siRNA formation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20055-20062.                                                                                      | 3.3 | 178       |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A defective interfering RNA that contains a mosaic of a plant virus genome. Cell, 1987, 51, 427-433.                                                                                                                           | 13.5 | 177       |
| 74 | Bipartite signal sequence mediates nuclear translocation of the plant potyviral NIa protein Plant<br>Cell, 1991, 3, 953-962.                                                                                                   | 3.1  | 177       |
| 75 | Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant Journal,<br>1998, 14, 393-400.                                                                                                 | 2.8  | 175       |
| 76 | Roles and Programming of Arabidopsis ARGONAUTE Proteins during Turnip Mosaic Virus Infection.<br>PLoS Pathogens, 2015, 11, e1004755.                                                                                           | 2.1  | 175       |
| 77 | ASRP: the Arabidopsis Small RNA Project Database. Nucleic Acids Research, 2004, 33, D637-D640.                                                                                                                                 | 6.5  | 173       |
| 78 | 5′ Proximal potyviral sequences mediate potato virus X/potyviral synergistic disease in transgenic<br>tobacco. Virology, 1995, 206, 583-590.                                                                                   | 1.1  | 168       |
| 79 | Arabidopsis RTM2 Gene Is Necessary for Specific Restriction of Tobacco Etch Virus and Encodes an<br>Unusual Small Heat Shock–like Protein. Plant Cell, 2000, 12, 569-582.                                                      | 3.1  | 163       |
| 80 | The genome structure of turnip crinkle virus. Virology, 1989, 170, 219-226.                                                                                                                                                    | 1.1  | 146       |
| 81 | Multimegabase Silencing in Nucleolar Dominance Involves siRNA-Directed DNA Methylation and Specific Methylcytosine-Binding Proteins. Molecular Cell, 2008, 32, 673-684.                                                        | 4.5  | 144       |
| 82 | Nucleotide sequence and genome organization of carnation mottle virus RNA. Nucleic Acids Research, 1985, 13, 6663-6677.                                                                                                        | 6.5  | 143       |
| 83 | Climate Change and the Integrity of Science. Science, 2010, 328, 689-690.                                                                                                                                                      | 6.0  | 143       |
| 84 | Hiding in plain sight: New virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS ONE, 2019, 14, e0219207.                                                                                   | 1.1  | 141       |
| 85 | Identification of essential residues in potyvirus proteinase HC-pro by site-directed mutagenesis.<br>Virology, 1989, 173, 692-699.                                                                                             | 1.1  | 140       |
| 86 | Strain-Specific Interaction of the Tobacco Etch Virus NIa Protein with the Translation Initiation Factor eIF4E in the Yeast Two-Hybrid System. Virology, 2000, 273, 300-306.                                                   | 1.1  | 138       |
| 87 | Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology, 2006, 346, 7-14.                                                                                                                     | 1.1  | 137       |
| 88 | Identification of <i>MIR390a</i> precursor processing-defective mutants in Arabidopsis by direct<br>genome sequencing. Proceedings of the National Academy of Sciences of the United States of America,<br>2010, 107, 466-471. | 3.3  | 137       |
| 89 | CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proceedings of the United States of America, 2015, 112, 13729-13734.                                                                        | 3.3  | 129       |
| 90 | Suppressor of RNA silencing encoded by Beet yellows virus. Virology, 2003, 306, 203-209.                                                                                                                                       | 1.1  | 128       |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | <i>mut-16</i> and other <i>mutator</i> class genes modulate 22G and 26G siRNA pathways in<br><i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States<br>of America, 2011, 108, 1201-1208. | 3.3 | 128       |
| 92  | The tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in viral replication. Journal of Virology, 1994, 68, 2388-2397.                                                                                    | 1.5 | 126       |
| 93  | Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo. Journal of Virology, 1993, 67, 6995-7000.                                                                            | 1.5 | 122       |
| 94  | New Generation of Artificial MicroRNA and Synthetic Trans-Acting Small Interfering RNA Vectors for Efficient Gene Silencing in Arabidopsis. Plant Physiology, 2014, 165, 15-29.                                                        | 2.3 | 119       |
| 95  | Mutations in the Region Encoding the Central Domain of Helper Component-Proteinase (HC-Pro)<br>Eliminate Potato Virus X/Potyviral Synergism. Virology, 1997, 231, 35-42.                                                               | 1.1 | 118       |
| 96  | Identification and characterization of a locus (RTM1) that restricts long-distance movement of tobacco etch virus in Arabidopsis thaliana. Plant Journal, 1998, 14, 177-186.                                                           | 2.8 | 114       |
| 97  | Computational and analytical framework for small RNA profiling by high-throughput sequencing.<br>Rna, 2009, 15, 992-1002.                                                                                                              | 1.6 | 112       |
| 98  | Small RNA-Based Antiviral Defense in the Phytopathogenic Fungus Colletotrichum higginsianum. PLoS<br>Pathogens, 2016, 12, e1005640.                                                                                                    | 2.1 | 112       |
| 99  | Regulation and functional specialization of small RNA–target nodes during plant development.<br>Current Opinion in Plant Biology, 2009, 12, 622-627.                                                                                   | 3.5 | 111       |
| 100 | Transgenically expressed viral RNA silencing suppressors interfere with microRNA methylation inArabidopsis. FEBS Letters, 2006, 580, 3117-3120.                                                                                        | 1.3 | 107       |
| 101 | Turnip crinkle virus infection from RNA synthesized in Vitro. Virology, 1989, 170, 214-218.                                                                                                                                            | 1.1 | 100       |
| 102 | Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation <i>In Vivo</i> . Journal of Virology, 2014, 88, 11933-11945.                                                | 1.5 | 97        |
| 103 | Host-Specific Involvement of the HC Protein in the Long-Distance Movement of Potyviruses. Journal of Virology, 2002, 76, 1922-1931.                                                                                                    | 1.5 | 95        |
| 104 | Processing of the tobacco etch virus 49K protease requires autoproteolysis. Virology, 1987, 160, 355-362.                                                                                                                              | 1.1 | 94        |
| 105 | Activation and Suppression of RNA Silencing by Plant Viruses. Virology, 2001, 281, 1-5.                                                                                                                                                | 1.1 | 94        |
| 106 | Selectable viruses and altered susceptibility mutants in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 772-777.                                                     | 3.3 | 92        |
| 107 | <i>RTM3</i> , Which Controls Long-Distance Movement of Potyviruses, Is a Member of a New Plant<br>Gene Family Encoding a Meprin and TRAF Homology Domain-Containing Protein. Plant Physiology, 2010,<br>154, 222-232.                  | 2.3 | 91        |
| 108 | Genome-wide profiling of Populus small RNAs. BMC Genomics, 2009, 10, 620.                                                                                                                                                              | 1.2 | 90        |

| #   | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Mutational analysis of the tobacco etch potyviral 35-kDa proteinase: Identification of essential residues and requirements for autoproteolysis. Virology, 1992, 190, 298-306.                                | 1.1  | 88        |
| 110 | Phytophthora Have Distinct Endogenous Small RNA Populations That Include Short Interfering and microRNAs. PLoS ONE, 2013, 8, e77181.                                                                         | 1.1  | 88        |
| 111 | Distinct Expression Patterns of Natural Antisense Transcripts in Arabidopsis. Plant Physiology, 2007, 144, 1247-1255.                                                                                        | 2.3  | 84        |
| 112 | Characterization of the potyviral HC-pro autoproteolytic cleavage site. Virology, 1992, 187, 308-315.                                                                                                        | 1.1  | 81        |
| 113 | Virus-Derived Gene Expression and RNA Interference Vector for Grapevine. Journal of Virology, 2012, 86, 6002-6009.                                                                                           | 1.5  | 78        |
| 114 | Requirement for HC-Pro Processing during Genome Amplification of Tobacco Etch Potyvirus.<br>Virology, 1995, 209, 268-273.                                                                                    | 1.1  | 77        |
| 115 | The ERI-6/7 Helicase Acts at the First Stage of an siRNA Amplification Pathway That Targets Recent Gene Duplications. PLoS Genetics, 2011, 7, e1002369.                                                      | 1.5  | 74        |
| 116 | Complementation of tobacco etch potyvirus mutants by active RNA polymerase expressed in transgenic cells Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 457-461. | 3.3  | 71        |
| 117 | Update of ASRP: the Arabidopsis Small RNA Project database. Nucleic Acids Research, 2007, 36, D982-D985.                                                                                                     | 6.5  | 70        |
| 118 | ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis.<br>Nature Communications, 2014, 5, 5468.                                                                      | 5.8  | 69        |
| 119 | Raspberry Pi–powered imaging for plant phenotyping. Applications in Plant Sciences, 2018, 6, e1031.                                                                                                          | 0.8  | 68        |
| 120 | Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of<br>Brachypodium distachyon. Genome Biology, 2013, 14, R145.                                                      | 13.9 | 67        |
| 121 | P-SAMS: a web site for plant artificial microRNA and synthetic <i>trans</i> -acting small interfering RNA design. Bioinformatics, 2016, 32, 157-158.                                                         | 1.8  | 67        |
| 122 | GENE-Counter: A Computational Pipeline for the Analysis of RNA-Seq Data for Gene Expression<br>Differences. PLoS ONE, 2011, 6, e25279.                                                                       | 1.1  | 66        |
| 123 | Identification of genes required for de novo DNA methylation in Arabidopsis. Epigenetics, 2011, 6,<br>344-354.                                                                                               | 1.3  | 64        |
| 124 | Viral invasion and host defense: strategies and counter-strategies. Current Opinion in Plant Biology, 1998, 1, 336-341.                                                                                      | 3.5  | 63        |
| 125 | Secondary Structures in the Capsid Protein Coding Sequence and 3′ Nontranslated Region Involved in Amplification of the Tobacco Etch Virus Genome. Journal of Virology, 1998, 72, 4072-4079.                 | 1.5  | 60        |
| 126 | Long-Distance Movement Factor: A Transport Function of the Potyvirus Helper Component Proteinase.<br>Plant Cell, 1995, 7, 549.                                                                               | 3.1  | 57        |

8

| #   | ARTICLE                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Functional Analysis of the Interaction between VPg-Proteinase (NIa) and RNA Polymerase (NIb) of<br>Tobacco Etch Potyvirus, Using Conditional and Suppressor Mutants. Journal of Virology, 1999, 73,<br>8732-8740. | 1.5  | 57        |
| 128 | RNA Binding Activity of NIa Proteinase of Tobacco Etch Potyvirus. Virology, 1997, 237, 327-336.                                                                                                                   | 1.1  | 55        |
| 129 | The Caenorhabditis elegans RDE-10/RDE-11 Complex Regulates RNAi by Promoting Secondary siRNA<br>Amplification. Current Biology, 2012, 22, 881-890.                                                                | 1.8  | 49        |
| 130 | Loss of CMD2â€mediated resistance to cassava mosaic disease in plants regenerated through somatic embryogenesis. Molecular Plant Pathology, 2016, 17, 1095-1110.                                                  | 2.0  | 48        |
| 131 | Highly specific gene silencing in a monocot species by artificial micro <scp>RNA</scp> s derived from chimeric <i>mi<scp>RNA</scp></i> precursors. Plant Journal, 2015, 82, 1061-1075.                            | 2.8  | 45        |
| 132 | Carnation Mottle Virus and Viruses with Similar Properties. , 1988, , 73-112.                                                                                                                                     |      | 43        |
| 133 | Rapid detection of plant RNA viruses by dot blot hybridization. Plant Molecular Biology Reporter, 1983, 1, 21-25.                                                                                                 | 1.0  | 27        |
| 134 | Differential response of cassava genotypes to infection by cassava mosaic geminiviruses. Virus<br>Research, 2017, 227, 69-81.                                                                                     | 1.1  | 26        |
| 135 | Moving targets. Nature, 2000, 408, 150-151.                                                                                                                                                                       | 13.7 | 25        |
| 136 | Biologically active cymbidium ringspot virus satellite RNA in transgenic plants suppresses accumulation of DI RNA. Virology, 1992, 188, 429-437.                                                                  | 1.1  | 24        |
| 137 | NIa and NIb of Peanut Stripe Potyvirus Are Present in the Nucleus of Infected Cells, but Do Not Form<br>Inclusions. Virology, 1996, 224, 368-379.                                                                 | 1.1  | 23        |
| 138 | An International Bioinformatics Infrastructure to Underpin the <i>Arabidopsis</i> Community. Plant<br>Cell, 2010, 22, 2530-2536.                                                                                  | 3.1  | 23        |
| 139 | Nuclear Transport of Tobacco Etch Potyviral RNA-Dependent RNA Polymerase Is Highly Sensitive to<br>Sequence Alterations. Virology, 1993, 193, 951-958.                                                            | 1.1  | 22        |
| 140 | Antiviral ARGONAUTEs Against <i>Turnip Crinkle Virus</i> Revealed by Image-Based Trait Analysis. Plant<br>Physiology, 2019, 180, 1418-1435.                                                                       | 2.3  | 22        |
| 141 | Reinventing plant virus movement. Trends in Microbiology, 1999, 7, 312-313.                                                                                                                                       | 3.5  | 15        |
| 142 | Vectors for cell-free expression and mutagenesis of protein-coding sequences. Nucleic Acids<br>Research, 1987, 15, 10066-10066.                                                                                   | 6.5  | 13        |
| 143 | Small RNAs and Arabidopsis. A Fast Forward Look. Plant Physiology, 2005, 138, 565-566.                                                                                                                            | 2.3  | 12        |
| 144 | Splicing and dicing with a <i>SERRATE</i> d edge. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8489-8490.                                                          | 3.3  | 12        |

| #   | Article                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Fast-forward generation of effective artificial small RNAs for enhanced antiviral defense in plants.<br>RNA & Disease (Houston, Tex ), 0, , .                         | 1.0 | 11        |
| 146 | Fast-forward generation of effective artificial small RNAs for enhanced antiviral defense in plants.<br>RNA & Disease (Houston, Tex ), 2016, 3, .                     | 1.0 | 8         |
| 147 | Preparation of Multiplexed Small RNA Libraries from Plants. Bio-protocol, 2014, 4, .                                                                                  | 0.2 | 7         |
| 148 | Genome studies and molecular geneticsThe consequences of gene and genome duplication in plants.<br>Current Opinion in Plant Biology, 2005, 8, 119-121.                | 3.5 | 6         |
| 149 | Sequence and Expression Differences Underlie Functional Specialization of Arabidopsis MicroRNAs miR159 and miR319. Developmental Cell, 2019, 51, 129.                 | 3.1 | 5         |
| 150 | Functional dissection of the <i><scp>ARGONAUTE</scp>7</i> promoter. Plant Direct, 2019, 3, e00102.                                                                    | 0.8 | 4         |
| 151 | The Personal Sequence Database: a suite of tools to create and maintain web-accessible sequence databases. BMC Bioinformatics, 2007, 8, 479.                          | 1.2 | 3         |
| 152 | Bipartite Signal Sequence Mediates Nuclear Translocation of the Plant Potyviral NIa Protein. Plant<br>Cell, 1991, 3, 953.                                             | 3.1 | 2         |
| 153 | Chapter 20 Targeting of Proteins to the Nucleus. Methods in Cell Biology, 1995, 50, 283-294.                                                                          | 0.5 | 2         |
| 154 | Arabidopsis RTM2 Gene Is Necessary for Specific Restriction of Tobacco Etch Virus and Encodes an<br>Unusual Small Heat Shock-Like Protein. Plant Cell, 2000, 12, 569. | 3.1 | 1         |