Francesca Biagioni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8888279/publications.pdf

Version: 2024-02-01

100 papers 3,331 citations

34 h-index 53 g-index

102 all docs 102 docs citations

102 times ranked 7097 citing authors

#	Article	IF	CITATIONS
1	The role of norepinephrine in epilepsy: from the bench to the bedside. Neuroscience and Biobehavioral Reviews, 2004, 28, 507-524.	6.1	156
2	Induction of Dickkopf-1, a Negative Modulator of the Wnt Pathway, Is Required for the Development of Ischemic Neuronal Death. Journal of Neuroscience, 2005, 25, 2647-2657.	3.6	127
3	Endogenous Activation of mGlu5 Metabotropic Glutamate Receptors Contributes to the Development of Nigro-Striatal Damage Induced by 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine in Mice. Journal of Neuroscience, 2004, 24, 828-835.	3. 6	113
4	Pharmacological Activation of mGlu4 Metabotropic Glutamate Receptors Reduces Nigrostriatal Degeneration in Mice Treated with 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine. Journal of Neuroscience, 2006, 26, 7222-7229.	3 . 6	108
5	Induction of the Wnt Antagonist, Dickkopf-1, Contributes to the Development of Neuronal Death in Models of Brain Focal Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 264-276.	4.3	108
6	EGF Decreases the Abundance of MicroRNAs That Restrain Oncogenic Transcription Factors. Science Signaling, 2010, 3, ra43.	3 . 6	100
7	Induction of the Wnt Inhibitor, Dickkopf-1, Is Associated with Neurodegeneration Related to Temporal Lobe Epilepsy. Epilepsia, 2007, 48, 694-705.	5.1	91
8	Pentraxin 3 Induces Vascular Endothelial Dysfunction Through a P-selectin/Matrix Metalloproteinase-1 Pathway. Circulation, 2015, 131, 1495-1505.	1.6	89
9	miRâ€10b*, a master inhibitor of the cell cycle, is downâ€regulated in human breast tumours. EMBO Molecular Medicine, 2012, 4, 1214-1229.	6.9	85
10	ccf-mtDNA as a Potential Link Between the Brain and Immune System in Neuro-Immunological Disorders. Frontiers in Immunology, 2019, 10, 1064.	4.8	83
11	mTOR-Dependent Cell Proliferation in the Brain. BioMed Research International, 2017, 2017, 1-14.	1.9	70
12	The inflammatory protein Pentraxin 3 in cardiovascular disease. Immunity and Ageing, 2016, 13, 25.	4.2	69
13	Rapamycin inhibits the growth of glioblastoma. Brain Research, 2013, 1495, 37-51.	2.2	68
14	Occurrence of neuronal inclusions combined with increased nigral expression of \hat{l}_{\pm} -synuclein within dopaminergic neurons following treatment with amphetamine derivatives in mice. Brain Research Bulletin, 2005, 65, 405-413.	3.0	65
15	Transcriptional integration of mitogenic and mechanical signals by Myc and YAP. Genes and Development, 2017, 31, 2017-2022.	5.9	65
16	Epigenetic Effects Induced by Methamphetamine and Methamphetamine-Dependent Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-28.	4.0	63
17	Protective role of group-II metabotropic glutamate receptors against nigro-striatal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Neuropharmacology, 2003, 45, 155-166.	4.1	60
18	EGF induces microRNAs that target suppressors of cell migration: miR-15b targets <i>MTSS1</i> in breast cancer. Science Signaling, 2015, 8, ra29.	3.6	57

#	Article	IF	CITATIONS
19	The Wnt Antagonist, Dickkopf-1, as a Target for the Treatment of Neurodegenerative Disorders. Neurochemical Research, 2008, 33, 2401-2406.	3.3	55
20	The Autophagy Status of Cancer Stem Cells in Gliobastoma Multiforme: From Cancer Promotion to Therapeutic Strategies. International Journal of Molecular Sciences, 2019, 20, 3824.	4.1	52
21	The Effects of Amphetamine and Methamphetamine on the Release of Norepinephrine, Dopamine and Acetylcholine From the Brainstem Reticular Formation. Frontiers in Neuroanatomy, 2019, 13, 48.	1.7	52
22	Potential Antidepressant Effects of Scutellaria baicalensis, Hericium erinaceus and Rhodiola rosea. Antioxidants, 2020, 9, 234.	5.1	51
23	Cooperation Between MYC and β atenin in Liver Tumorigenesis Requires Yap/Taz. Hepatology, 2020, 72, 1430-1443.	7. 3	51
24	The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations. Journal of Neural Transmission, 2015, 122, 849-862.	2.8	50
25	Promiscuous Roles of Autophagy and Proteasome in Neurodegenerative Proteinopathies. International Journal of Molecular Sciences, 2020, 21, 3028.	4.1	50
26	Phytochemicals Bridging Autophagy Induction and Alpha-Synuclein Degradation in Parkinsonism. International Journal of Molecular Sciences, 2019, 20, 3274.	4.1	48
27	Enhanced Tau Phosphorylation in the Hippocampus of Mice Treated with 3,4-Methylenedioxymethamphetamine ("Ecstasyâ€). Journal of Neuroscience, 2008, 28, 3234-3245.	3.6	45
28	mTOR Modulates Methamphetamine-Induced Toxicity through Cell Clearing Systems. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-22.	4.0	45
29	A Sentinel in the Crosstalk Between the Nervous and Immune System: The (Immuno)-Proteasome. Frontiers in Immunology, 2019, 10, 628.	4.8	45
30	Epilepsy and Alzheimer's Disease: Potential mechanisms for an association. Brain Research Bulletin, 2020, 160, 107-120.	3.0	45
31	Genetic or pharmacological blockade of noradrenaline synthesis enhances the neurochemical, behavioral, and neurotoxic effects of methamphetamine. Journal of Neurochemistry, 2008, 105, 471-483.	3.9	44
32	The Neuroanatomy of the Reticular Nucleus Locus Coeruleus in Alzheimer's Disease. Frontiers in Neuroanatomy, 2017, 11, 80.	1.7	44
33	The Autophagoproteasome a Novel Cell Clearing Organelle in Baseline and Stimulated Conditions. Frontiers in Neuroanatomy, 2016, 10, 78.	1.7	38
34	Interdependency Between Autophagy and Synaptic Vesicle Trafficking: Implications for Dopamine Release. Frontiers in Molecular Neuroscience, 2018, 11, 299.	2.9	38
35	Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis. Frontiers in Cellular Neuroscience, 2015, 9, 434.	3.7	35
36	The role of Locus Coeruleus in neuroinflammation occurring in Alzheimer's disease. Brain Research Bulletin, 2019, 153, 47-58.	3.0	35

#	Article	IF	CITATIONS
37	TREM Receptors Connecting Bowel Inflammation to Neurodegenerative Disorders. Cells, 2019, 8, 1124.	4.1	35
38	New Insights into the Potential Roles of 3-lodothyronamine (T1AM) and Newly Developed Thyronamine-Like TAAR1 Agonists in Neuroprotection. Frontiers in Pharmacology, 2017, 8, 905.	3.5	34
39	The Multi-Faceted Effect of Curcumin in Glioblastoma from Rescuing Cell Clearance to Autophagy-Independent Effects. Molecules, 2020, 25, 4839.	3.8	33
40	Locus Coeruleus Modulates Neuroinflammation in Parkinsonism and Dementia. International Journal of Molecular Sciences, 2020, 21, 8630.	4.1	32
41	Activation of brain metabolism and fos during limbic seizures: The role of Locus Coeruleus. Neurobiology of Disease, 2008, 30, 388-399.	4.4	31
42	Ambiguous Effects of Autophagy Activation Following Hypoperfusion/Ischemia. International Journal of Molecular Sciences, 2018, 19, 2756.	4.1	31
43	Molecular Mechanisms Linking ALS/FTD and Psychiatric Disorders, the Potential Effects of Lithium. Frontiers in Cellular Neuroscience, 2019, 13, 450.	3.7	31
44	Cell Clearing Systems as Targets of Polyphenols in Viral Infections: Potential Implications for COVID-19 Pathogenesis. Antioxidants, 2020, 9, 1105.	5.1	31
45	Merging the Multi-Target Effects of Phytochemicals in Neurodegeneration: From Oxidative Stress to Protein Aggregation and Inflammation. Antioxidants, 2020, 9, 1022.	5.1	31
46	Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons. Brain Research, 2019, 1719, 157-175.	2.2	28
47	Systematic Morphometry of Catecholamine Nuclei in the Brainstem. Frontiers in Neuroanatomy, 2017, 11, 98.	1.7	26
48	The role of autophagy on the survival of dopamine neurons. Current Topics in Medicinal Chemistry, 2009, 9, 869-79.	2.1	26
49	Downregulation of microRNAs 145-3p and 145-5p Is a Long-term Predictor of Postmenopausal Breast Cancer Risk: The ORDET Prospective Study. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2471-2481.	2.5	24
50	Cell Clearing Systems Bridging Neuro-Immunity and Synaptic Plasticity. International Journal of Molecular Sciences, 2019, 20, 2197.	4.1	24
51	Rapamycin promotes differentiation increasing \hat{I}^2 III-tubulin, NeuN, and NeuroD while suppressing nestin expression in glioblastoma cells. Oncotarget, 2017, 8, 29574-29599.	1.8	24
52	Neuronal inclusions in degenerative disorders. Brain Research Bulletin, 2005, 65, 275-290.	3.0	23
53	Loss of spinal motor neurons and alteration of alpha-synuclein immunostaining in MPTP induced Parkinsonism in mice. Journal of Chemical Neuroanatomy, 2012, 44, 76-85.	2.1	23
54	Prion Protein in Glioblastoma Multiforme. International Journal of Molecular Sciences, 2019, 20, 5107.	4.1	23

#	Article	IF	Citations
55	mTOR-Related Cell-Clearing Systems in Epileptic Seizures, an Update. International Journal of Molecular Sciences, 2020, 21, 1642.	4.1	23
56	The emerging role of m-TOR up-regulation in brain Astrocytoma. Histology and Histopathology, 2017, 32, 413-431.	0.7	23
57	Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas. Frontiers in Neuroanatomy, 2017, 11, 49.	1.7	22
58	Rapamycin Ameliorates Defects in Mitochondrial Fission and Mitophagy in Glioblastoma Cells. International Journal of Molecular Sciences, 2021, 22, 5379.	4.1	22
59	The effects of proteasome on baseline and methamphetamine-dependent dopamine transmission. Neuroscience and Biobehavioral Reviews, 2019, 102, 308-317.	6.1	21
60	5-HT2C serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice. Pharmacological Research, 2015, 99, 258-268.	7.1	18
61	Dissecting Molecular Features of Gliomas: Genetic Loci and Validated Biomarkers. International Journal of Molecular Sciences, 2020, 21, 685.	4.1	18
62	A Focus on the Beneficial Effects of Alpha Synuclein and a Re-Appraisal of Synucleinopathies. Current Protein and Peptide Science, 2018, 19, 598-611.	1.4	17
63	The Role of Cellular Prion Protein in Promoting Stemness and Differentiation in Cancer. Cancers, 2021, 13, 170.	3.7	16
64	Vacuolar Protein Sorting Genes in Parkinson's Disease: A Re-appraisal of Mutations Detection Rate and Neurobiology of Disease. Frontiers in Neuroscience, 2016, 10, 532.	2.8	15
65	Neuroprotective Effects of Curcumin in Methamphetamine-Induced Toxicity. Molecules, 2021, 26, 2493.	3.8	15
66	Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders. Progress in Neurobiology, 2021, 204, 102112.	5.7	15
67	Quantitative Ultrastructural Morphometry and Gene Expression of mTOR-Related Mitochondriogenesis within Glioblastoma Cells. International Journal of Molecular Sciences, 2020, 21, 4570.	4.1	14
68	Motor Neurons Pathology After Chronic Exposure to MPTP in Mice. Neurotoxicity Research, 2020, 37, 298-313.	2.7	13
69	mTOR Modulates Intercellular Signals for Enlargement and Infiltration in Glioblastoma Multiforme. Cancers, 2020, 12, 2486.	3.7	13
70	Intermittent Dopaminergic Stimulation causes Behavioral Sensitization in the Addicted Brain and Parkinsonism. International Review of Neurobiology, 2009, 88, 371-398.	2.0	12
71	Brain diseases and tumorigenesis: The good and bad cops of pentraxin3. International Journal of Biochemistry and Cell Biology, 2015, 69, 70-74.	2.8	11
72	In search for a gold-standard procedure to count motor neurons in the spinal cord. Histology and Histopathology, 2018, 33, 1021-1046.	0.7	11

#	Article	IF	CITATIONS
73	The Monoamine Brainstem Reticular Formation as a Paradigm for Re-Defining Various Phenotypes of Parkinson's Disease Owing Genetic and Anatomical Specificity. Frontiers in Cellular Neuroscience, 2017, 11, 102.	3.7	9
74	Cell to Cell Spreading of Misfolded Proteins as a Therapeutic Target in Motor Neuron Disease. Current Medicinal Chemistry, 2014, 21, 3508-3534.	2.4	9
75	Degeneration of cholinergic basal forebrain nuclei after focally evoked status epilepticus. Neurobiology of Disease, 2019, 121, 76-94.	4.4	8
76	Cell-Clearing Systems Bridging Repeat Expansion Proteotoxicity and Neuromuscular Junction Alterations in ALS and SBMA. International Journal of Molecular Sciences, 2020, 21, 4021.	4.1	7
77	Chronic MPTP in Mice Damage-specific Neuronal Phenotypes within Dorsal Laminae of the Spinal Cord. Neurotoxicity Research, 2021, 39, 156-169.	2.7	7
78	Norepinephrine Protects against Methamphetamine Toxicity through \hat{l}^2 2-Adrenergic Receptors Promoting LC3 Compartmentalization. International Journal of Molecular Sciences, 2021, 22, 7232.	4.1	7
79	The neurobiology of dysautonomia in Parkinson's disease. Archives Italiennes De Biologie, 2013, 151, 203-18.	0.4	6
80	Plastic Changes in the Spinal Cord in Motor Neuron Disease. BioMed Research International, 2014, 2014, 1-14.	1.9	5
81	A Re-Appraisal of Pathogenic Mechanisms Bridging Wet and Dry Age-Related Macular Degeneration Leads to Reconsider a Role for Phytochemicals. International Journal of Molecular Sciences, 2020, 21, 5563.	4.1	5
82	The Autophagy-Related Organelle Autophagoproteasome Is Suppressed within Ischemic Penumbra. International Journal of Molecular Sciences, 2021, 22, 10364.	4.1	5
83	Spreading of Alpha Synuclein from Glioblastoma Cells towards Astrocytes Correlates with Stem-like Properties. Cancers, 2022, 14, 1417.	3.7	5
84	In Pancreatic Adenocarcinoma Alpha-Synuclein Increases and Marks Peri-Neural Infiltration. International Journal of Molecular Sciences, 2022, 23, 3775.	4.1	5
85	Motor neuron pathology and behavioral alterations at late stages in a SMA mouse model. Brain Research, 2012, 1442, 66-75.	2.2	4
86	Ultrastructural characterization of peripheral denervation in a mouse model of Type III spinal muscular atrophy. Journal of Neural Transmission, 2021, 128, 771-791.	2.8	4
87	Lactoferrin Protects against Methamphetamine Toxicity by Modulating Autophagy and Mitochondrial Status. Nutrients, 2021, 13, 3356.	4.1	4
88	Protective effects of long-term lithium administration in a slowly progressive SMA mouse model. Archives Italiennes De Biologie, 2018, 155, 253-274.	0.4	4
89	Occurrence of Total and Proteinase K-Resistant Alpha-Synuclein in Glioblastoma Cells Depends on mTOR Activity. Cancers, 2022, 14, 1382.	3.7	4
90	Dopamine Stimulation via Infusion in the Lateral Ventricle. Annals of the New York Academy of Sciences, 2006, 1074, 337-343.	3.8	3

#	Article	IF	CITATIONS
91	Neurons other than motor neurons in motor neuron disease. Histology and Histopathology, 2017, 32, 1115-1123.	0.7	3
92	Autophagy-Based Hypothesis on the Role of Brain Catecholamine Response During Stress. Frontiers in Psychiatry, 2020, 11, 569248.	2.6	2
93	An attempt to dissect a peripheral marker based on cell pathology in Parkinson's disease. Journal of Neural Transmission, 2021, 128, 1599-1610.	2.8	2
94	Stoichiometric Analysis of Shifting in Subcellular Compartmentalization of HSP70 within Ischemic Penumbra. Molecules, 2021, 26, 3578.	3.8	2
95	Inhibition of Autophagy In Vivo Extends Methamphetamine Toxicity to Mesencephalic Cell Bodies. Pharmaceuticals, 2021, 14, 1003.	3.8	2
96	Mitochondrial Serine Protease HTRA2 p.G399S in a Female with Di George Syndrome and Parkinson's Disease. Parkinson's Disease, 2018, 2018, 1-6.	1.1	2
97	Detailing the ultrastructure's increase of prion protein in pancreatic adenocarcinoma. World Journal of Gastroenterology, 2021, 27, 7324-7339.	3.3	2
98	The neurobiology of the spinal cord in experimental parkinsonism and Parkinson's disease. Archives Italiennes De Biologie, 2013, 151, 219-34.	0.4	2
99	Morphology, clearing efficacy, and mTOR dependency of the organelle autophagoproteasome. European Journal of Histochemistry, 2021, 65, .	1.5	1
100	Within the Ischemic Penumbra, Sub-Cellular Compartmentalization of Heat Shock Protein 70 Overlaps with Autophagy Proteins and Fails to Merge with Lysosomes. Molecules, 2022, 27, 3122.	3.8	1