Mikolaj Szafran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8888268/publications.pdf

Version: 2024-02-01

687363 713466 47 558 13 21 citations h-index g-index papers 48 48 48 456 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Graphene-reinforced ceramics obtained by slip casting and pressureless sintering: Interactions and stability of particles in aqueous environment. Open Ceramics, 2022, 9, 100245.	2.0	2
2	Microstructure evolution and reaction mechanism of Pb(Zr1/2Ti1/2)O3-Pb(Zn1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3 piezoelectric ceramics with plate-like PbTiO3 template. Ceramics International, 2021, 47, 470-478.	4.8	12
3	The influence of the chemical structure of selected polymers on the properties of ferroelectric ceramic-polymer composites. Open Ceramics, 2021, 7, 100160.	2.0	2
4	Influence of coreâ€shell structure on the cure depth in photopolymerizable alumina dispersion. International Journal of Applied Ceramic Technology, 2020, 17, 248-254.	2.1	8
5	Effect of MnO2 on the microstructure and electrical properties of 0.83Pb(Zr0.5Ti0.5)O3-0.11Pb(Zn1/3Nb2/3)O3-0.06Pb(Ni1/3Nb2/3)O3 piezoelectric ceramics. Ceramics International, 2020, 46, 180-185.	4.8	12
6	Monodisperse Ba0.6Sr0.4TiO3 hollow spheres via a modified template-assisted method. Applied Surface Science, 2020, 531, 147315.	6.1	6
7	Ultralight graphene aerogel/PVDF composites for flexible piezoelectric nanogenerators. Composites Communications, 2020, 22, 100542.	6.3	13
8	Sweet ceramics: how saccharide-based compounds have changed colloidal processing of ceramic materials. Journal of the Korean Ceramic Society, 2020, 57, 231-245.	2.3	10
9	Characterization and performance of plate-like Ba0.6Sr0.4TiO3/Poly(vinylidene fluoride –) Tj ETQq1 1 0.784314 Polymer, 2020, 203, 122777.	l rgBT /Ove 3.8	erlock 10 Tf : 14
10	Polyvinylidene difluoride-based composite: glassy dynamics and pretransitional behaviour. European Physical Journal B, 2020, 93, 1.	1.5	5
11	Photochromic effect of transparent lead-free ferroelectric KSr2Nb5O15 ceramics. Journal of the European Ceramic Society, 2019, 39, 5260-5266.	5.7	35
12	Synthesis of Zr substituted B-site complex Bi4(ZrxTi1-x)3O12 platelet microcrystals. Journal of Alloys and Compounds, 2019, 806, 378-385.	5.5	4
13	Application of highly sensitive spectrophotometric analysis in detection of metal content in molybdenum reinforced alumina obtained by precursor infiltration of ceramic preforms. Ceramics International, 2019, 45, 22047-22054.	4.8	3
14	Diglyceryl acrylate as alternative additive dedicated to colloidal shaping of oxide materials – Synthesis, characterization and application in manufacturing of ZTA composites by gelcasting. Journal of the European Ceramic Society, 2019, 39, 3421-3432.	5.7	20
15	Gelcasting of Al2O3–W composites: Broadband dielectric spectroscopy and rheological studies of tungsten influence on polymerisation kinetics. Ceramics International, 2019, 45, 15237-15243.	4.8	7
16	Thermal decomposition of polyhydroxy processing agents dedicated to colloidal shaping of ceramics $\hat{a} \in \text{``Thermogravimetry coupled with mass spectrometry and properties of ZTA composites.}$ Thermochimica Acta, 2019, 674, 100-109.	2.7	6
17	Polymer matrix ferroelectric composites under pressure: Negative electric capacitance and glassy dynamics. European Physical Journal E, 2019, 42, 118.	1.6	4
18	Synthesis of plate-like B-site complex perovskite Ba(Zr0.1Ti0.9)O3 microcrystals. Materials Letters, 2019, 236, 715-718.	2.6	5

#	Article	IF	CITATIONS
19	Copolymers dispersions designed to shaping of ceramic materials. Journal of Thermal Analysis and Calorimetry, 2018, 132, 453-461.	3.6	6
20	Thermoanalytical studies of the ceramic-metal composites obtained by gel-centrifugal casting. Journal of Thermal Analysis and Calorimetry, 2018, 133, 303-312.	3.6	3
21	Combined centrifugal-slip casting method used for preparation the Al2O3-Ni functionally graded composites. Composites Part B: Engineering, 2018, 141, 158-163.	12.0	38
22	Colloidal processing of Al2O3 and BST materials. Journal of Thermal Analysis and Calorimetry, 2017, 130, 365-376.	3.6	6
23	2-carboxyethyl acrylate as a new monomer preventing negative effect of oxygen inhibition in gelcasting of alumina. Ceramics International, 2016, 42, 13682-13688.	4.8	16
24	Magnetic field alignment in highly concentrated suspensions for gelcasting process. Ceramics International, 2016, 42, 294-301.	4.8	6
25	Role of molecular structure of monosaccharides on the viscosity of aqueous nanometric alumina suspensions. Ceramics International, 2016, 42, 8572-8580.	4.8	14
26	Deflocculation and stabilization of Ti ₃ SiC ₂ ceramic powder in gelcasting process. Journal of the Ceramic Society of Japan, 2015, 123, 1010-1017.	1.1	12
27	Investigations of tunability of ferroelectric ceramic-polymer composites. , 2014, , .		1
28	Acryloyl derivative of glycerol in fabrication of zirconia ceramics by polymerization in situ. Ceramics International, 2014, 40, 13289-13298.	4.8	11
29	l-Ascorbic acid as a new activator in fabrication of ceramics by techniques using in situ polymerization. Journal of the European Ceramic Society, 2014, 34, 1581-1589.	5 . 7	13
30	Fabrication of textured alumina by magnetic alignment via gelcasting based on low-toxic system. Journal of the European Ceramic Society, 2014, 34, 3841-3848.	5.7	19
31	Monoacryloyl esters of carbohydrates: Synthesis, polymerization and application in ceramic technology. Carbohydrate Polymers, 2014, 111, 610-618.	10.2	12
32	New anhydrous aluminum nitride dispersions as potential heat-transferring media. Powder Technology, 2013, 235, 717-722.	4.2	14
33	Surface properties of nanozirconia and their effect on its rheological behaviour and sinterability. Journal of the European Ceramic Society, 2013, 33, 1875-1883.	5 . 7	20
34	Fabrication of textured α-alumina in high magnetic field via gelcasting with the use of glucose derivative. Journal of the Ceramic Society of Japan, 2013, 121, 89-94.	1.1	7
35	Textured Ti ₃ SiC ₂ by gelcasting in a strong magnetic field. Journal of the Ceramic Society of Japan, 2012, 120, 544-547.	1.1	11
36	Thermal decomposition of monosaccharides derivatives applied in ceramic gelcasting process investigated by the coupled DTA/TG/MS analysis. Journal of Thermal Analysis and Calorimetry, 2012, 109, 773-782.	3.6	24

3

#	Article	IF	CITATIONS
37	Application of new low toxic monomers in gelcasting process of alumina powder. IOP Conference Series: Materials Science and Engineering, 2011, 18, 072009.	0.6	2
38	Application of monosaccharides derivatives in colloidal processing of aluminum oxide. Journal of the European Ceramic Society, 2010, 30, 2805-2811.	5.7	41
39	Saccharides Derivatives in Shaping of Ceramic Powders – New Monomers and Dispersants. Advances in Science and Technology, 2010, 62, 169-174.	0.2	7
40	New Low Toxic Water-Soluble Monomers for Gelcasting of Ceramic Powders. Advances in Science and Technology, 2010, 62, 163-168.	0.2	5
41	Gelcasting of alumina suspensions containing nanoparticles with glycerol monoacrylate. Journal of the European Ceramic Society, 2009, 29, 875-880.	5 . 7	25
42	Gelcasting Performance of Alumina Aqueous Suspensions with Glycerol Monoacrylate: A New Low-Toxicity Acrylic Monomer. Journal of the American Ceramic Society, 2007, 90, 1386-1393.	3.8	49
43	New Polymeric Binders in Ceramic Processing. Advances in Science and Technology, 2006, 45, 453-461.	0.2	4
44	Al ₂ O ₃ -Fe Functionally Graded Materials Fabricated under Magnetic Field. Solid State Phenomena, 2005, 101-102, 143-146.	0.3	7
45	Water Thinnable Polymeric Binders in Die Pressing of Alumina. Key Engineering Materials, 2004, 264-268, 125-128.	0.4	3
46	Application of Enzymes and Flocculants in Ceramic Processing of Alumina. Key Engineering Materials, 2004, 264-268, 69-72.	0.4	1
47	Effect of Acrylicâ€Styrene Copolymer Chemical Structure on the Properties of Ceramic Tapes Obtained by Tape Casting. Journal of the American Ceramic Society, 2001, 84, 1231-1235.	3 . 8	13