Nick Barker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8888255/publications.pdf Version: 2024-02-01

NICK RADKED

#	Article	IF	CITATIONS
1	Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature, 2022, 604, 723-731.	27.8	81
2	Targeted ablation of Lgr5-expressing intestinal stem cells in diphtheria toxin receptor-based mouse and organoid models. STAR Protocols, 2022, 3, 101411.	1.2	0
3	Organoid systems for recapitulating the intestinal stem cell niche and modeling disease in vitro. Advances in Stem Cells and Their Niches, 2022, , 57-96.	0.1	1
4	A genome-scale CRISPR screen reveals factors regulating Wnt-dependent renewal of mouse gastric epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	32
5	A constant pool of Lgr5+ intestinal stem cells is required for intestinal homeostasis. Cell Reports, 2021, 34, 108633.	6.4	37
6	A key malignant switch in skin SCC. Nature Cancer, 2021, 2, 1116-1118.	13.2	0
7	A tumour-resident Lgr5+ stem-cell-like pool drives the establishment and progression of advanced gastric cancers. Nature Cell Biology, 2021, 23, 1299-1313.	10.3	34
8	AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature, 2020, 578, 437-443.	27.8	89
9	Lgr5 Marks Adult Progenitor Cells Contributing to Skeletal Muscle Regeneration and Sarcoma Formation. Cell Reports, 2020, 33, 108535.	6.4	20
10	The Function of Lgr5+ Cells in the Gastric Antrum Does Not Require Fzd7 or Myc In Vivo. Biomedicines, 2019, 7, 50.	3.2	2
11	Distinct Localization of Mature HGF from its Precursor Form in Developing and Repairing the Stomach. International Journal of Molecular Sciences, 2019, 20, 2955.	4.1	10
12	A contemporary snapshot of intestinal stem cells and their regulation. Differentiation, 2019, 108, 3-7.	1.9	9
13	Bortezomib Stabilizes and Activates p53 in Proliferative Compartments of Both Normal and Tumor Tissues <i>In Vivo</i> . Cancer Research, 2019, 79, 3595-3607.	0.9	24
14	Neonatal Wnt-dependent Lgr5 positive stem cells are essential for uterine gland development. Nature Communications, 2019, 10, 5378.	12.8	48
15	<i>Frizzled-7</i> Is Required for Wnt Signaling in Gastric Tumors with and Without <i>Apc</i> Mutations. Cancer Research, 2019, 79, 970-981.	0.9	78
16	Recent Advances in Lgr5 + Stem Cell Research. Trends in Cell Biology, 2018, 28, 380-391.	7.9	99
17	Wnt Signaling in Adult Epithelial Stem Cells and Cancer. Progress in Molecular Biology and Translational Science, 2018, 153, 21-79.	1.7	30
18	The Central Role of Wnt Signaling and Organoid Technology in Personalizing Anticancer Therapy. Progress in Molecular Biology and Translational Science, 2018, 153, 299-319.	1.7	7

#	Article	IF	CITATIONS
19	Genomic and Epigenomic Profiling of High-Risk Intestinal Metaplasia Reveals Molecular Determinants of Progression to Gastric Cancer. Cancer Cell, 2018, 33, 137-150.e5.	16.8	175
20	Digesting recent stem cell advances in the gut. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 78-80.	17.8	0
21	Role of Lgr5-Expressing Stem Cells in Epithelial Renewal and Cancer in the Reproductive Tract. , 2018, , 45-59.		0
22	RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6. Nature, 2018, 557, 564-569.	27.8	141
23	Loss of the Wnt receptor Frizzled7 in the gastric epithelium is deleterious and triggers rapid repopulation in vivo. DMM Disease Models and Mechanisms, 2017, 10, 971-980.	2.4	20
24	Lgr5-expressing chief cells drive epithelial regeneration and cancer in the oxyntic stomach. Nature Cell Biology, 2017, 19, 774-786.	10.3	203
25	Quantifying Lgr5-positive stem cell behaviour in the pyloric epithelium. Scientific Reports, 2016, 6, 21923.	3.3	9
26	lnactivation of TGFÎ ² receptors in stem cells drives cutaneous squamous cell carcinoma. Nature Communications, 2016, 7, 12493.	12.8	81
27	Organoids as an in vitro model of human development and disease. Nature Cell Biology, 2016, 18, 246-254.	10.3	1,090
28	Eâ€cadherin can limit the transforming properties of activating βâ€catenin mutations. EMBO Journal, 2015, 34, 2321-2333.	7.8	83
29	Stemming Colorectal Cancer Growth and Metastasis: HOXA5 Forces Cancer Stem Cells to Differentiate. Cancer Cell, 2015, 28, 683-685.	16.8	22
30	Frizzled7 Functions as a Wnt Receptor in Intestinal Epithelial Lgr5+ Stem Cells. Stem Cell Reports, 2015, 4, 759-767.	4.8	114
31	Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO Journal, 2015, 34, 1319-1335.	7.8	50
32	Ovary and fimbrial stem cells: biology, niche and cancer origins. Nature Reviews Molecular Cell Biology, 2015, 16, 625-638.	37.0	80
33	Epithelial stem cells and intestinal cancer. Seminars in Cancer Biology, 2015, 32, 40-53.	9.6	58
34	Mutant p53 accumulates in cycling and proliferating cells in the normal tissues of p53 R172H mutant mice. Oncotarget, 2015, 6, 17968-17980.	1.8	21
35	Ovarian LGR5 is critical for successful pregnancy. FASEB Journal, 2014, 28, 2380-2389.	0.5	26
36	Leucine-rich Repeat-containing G-protein-coupled Receptor 5 Marks Short-term Hematopoietic Stem and Progenitor Cells during Mouse Embryonic Development. Journal of Biological Chemistry, 2014, 289, 23809-23816.	3.4	17

#	Article	IF	CITATIONS
37	Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nature Reviews Molecular Cell Biology, 2014, 15, 19-33.	37.0	970
38	Intestinal Stem Cells and Their Defining Niche. Current Topics in Developmental Biology, 2014, 107, 77-107.	2.2	93
39	LGR5 positivity defines stem-like cells in colorectal cancer. Carcinogenesis, 2014, 35, 849-858.	2.8	134
40	Ex vivo culture of the intestinal epithelium: strategies and applications. Gut, 2014, 63, 1345-1354.	12.1	109
41	Lgr5 marks stem/progenitor cells in ovary and tubal epithelia. Nature Cell Biology, 2014, 16, 745-757.	10.3	187
42	Lgr proteins in epithelial stem cell biology. Development (Cambridge), 2013, 140, 2484-2494.	2.5	130
43	Lgr5+ Gastric Stem Cells Divide Symmetrically to Effect Epithelial Homeostasis in the Pylorus. Cell Reports, 2013, 5, 349-356.	6.4	65
44	Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties. Cell, 2013, 152, 25-38.	28.9	889
45	Acute WNT signalling activation perturbs differentiation within the adult stomach and rapidly leads to tumour formation. Oncogene, 2013, 32, 2048-2057.	5.9	51
46	Abstract 5023: Stem cell hypothesis and function of Lgr5 in the development of colon cancer , 2013, , .		0
47	Cdx2 determines the fate of postnatal intestinal endoderm. Development (Cambridge), 2012, 139, 465-474.	2.5	85
48	Peyer's Patch M Cells Derived from Lgr5 ⁺ Stem Cells Require SpiB and Are Induced by RankL in Cultured "Miniguts― Molecular and Cellular Biology, 2012, 32, 3639-3647.	2.3	224
49	Spasmolytic polypeptide-expressing metaplasia (SPEM) in the gastric oxyntic mucosa does not arise from Lgr5-expressing cells. Gut, 2012, 61, 1678-1685.	12.1	45
50	The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent â€~+4' cell markers. EMBO Journal, 2012, 31, 3079-3091.	7.8	634
51	Lgr5 and Lgr6 as markers to study adult stem cell roles in self-renewal and cancer. Oncogene, 2012, 31, 3009-3022.	5.9	107
52	Developmental stageâ€specific contribution of <scp>LGR5</scp> ⁺ cells to basal and luminal epithelial lineages in the postnatal mammary gland. Journal of Pathology, 2012, 228, 300-309.	4.5	134
53	Lgr5+ve Stem/Progenitor Cells Contribute to Nephron Formation during Kidney Development. Cell Reports, 2012, 2, 540-552.	6.4	196
54	Stem cell reprogramming as a driver of basal cell carcinoma. Nature Cell Biology, 2012, 14, 1246-1247.	10.3	1

#	Article	IF	CITATIONS
55	Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nature Cell Biology, 2012, 14, 1099-1104.	10.3	647
56	Alteration of colonic stem cell gene signatures during the regenerative response to injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1600-1607.	3.8	49
57	Epithelial Stem Cells in the Esophagus: Who Needs Them?. Cell Stem Cell, 2012, 11, 284-286.	11.1	6
58	Identifying the Stem Cell of the Intestinal Crypt: Strategies and Pitfalls. Cell Stem Cell, 2012, 11, 452-460.	11.1	278
59	Gut stem cells in tissue renewal and disease: methods, markers, and myths. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 475-496.	6.6	38
60	Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature, 2011, 476, 293-297.	27.8	1,096
61	Sumoylation by Ubc9 Regulates the Stem Cell Compartment and Structure and Function of the Intestinal Epithelium in Mice. Gastroenterology, 2011, 140, 286-296.	1.3	52
62	Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 2011, 469, 415-418.	27.8	2,054
63	Actomyosin-Mediated Cellular Tension Drives Increased Tissue Stiffness and \hat{l}^2 -Catenin Activation to Induce Epidermal Hyperplasia and Tumor Growth. Cancer Cell, 2011, 19, 776-791.	16.8	477
64	Gastrointestinal stem cells in self-renewal and cancer. Journal of Gastroenterology, 2011, 46, 1039-1055.	5.1	39
65	Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proceedings of the United States of America, 2011, 108, 4099-4104.	7.1	130
66	A Comprehensive Model of the Spatio-Temporal Stem Cell and Tissue Organisation in the Intestinal Crypt. PLoS Computational Biology, 2011, 7, e1001045.	3.2	155
67	Lineage Tracing in the Intestinal Epithelium. Current Protocols in Stem Cell Biology, 2010, 13, Unit5A.4.	3.0	48
68	p21 loss blocks senescence following Apc loss and provokes tumourigenesis in the renal but not the intestinal epithelium. EMBO Molecular Medicine, 2010, 2, 472-486.	6.9	35
69	Chemoprevention by nonsteroidal anti-inflammatory drugs eliminates oncogenic intestinal stem cells via SMAC-dependent apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20027-20032.	7.1	93
70	Leucine-Rich Repeat-Containing G-Protein-Coupled Receptors as Markers of Adult Stem Cells. Gastroenterology, 2010, 138, 1681-1696.	1.3	300
71	Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells. Cell, 2010, 143, 134-144.	28.9	1,679
72	Lgr5+ve Stem Cells Drive Self-Renewal in the Stomach and Build Long-Lived Gastric Units In Vitro. Cell Stem Cell, 2010, 6, 25-36.	11.1	1,315

#	Article	IF	CITATIONS
73	Spindle Orientation Bias in Gut Epithelial Stem Cell Compartments Is Lost in Precancerous Tissue. Cell Stem Cell, 2010, 6, 175-181.	11.1	225
74	Tissue-Resident Adult Stem Cell Populations of Rapidly Self-Renewing Organs. Cell Stem Cell, 2010, 7, 656-670.	11.1	307
75	<i>Lgr6</i> Marks Stem Cells in the Hair Follicle That Generate All Cell Lineages of the Skin. Science, 2010, 327, 1385-1389.	12.6	692
76	The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice. Journal of Clinical Investigation, 2010, 120, 3969-3978.	8.2	96
77	Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 2009, 457, 608-611.	27.8	1,883
78	Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459, 262-265.	27.8	5,339
79	p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. Nature Genetics, 2009, 41, 1138-1143.	21.4	96
80	The role of APC and beta-catenin in the aetiology of aggressive fibromatosis (desmoid tumors). European Journal of Surgical Oncology, 2009, 35, 3-10.	1.0	130
81	Transcription Factor Achaete Scute-Like 2 Controls Intestinal Stem Cell Fate. Cell, 2009, 136, 903-912.	28.9	615
82	Prominin-1/CD133 Marks Stem Cells and Early Progenitors in Mouse Small Intestine. Gastroenterology, 2009, 136, 2187-2194.e1.	1.3	215
83	The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clinical and Experimental Metastasis, 2008, 25, 657-663.	3.3	173
84	Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genetics, 2008, 40, 1291-1299.	21.4	846
85	Detection of β-Catenin Localization by Immunohistochemistry. Methods in Molecular Biology, 2008, 468, 91-98.	0.9	19
86	The Canonical Wnt/β-Catenin Signalling Pathway. Methods in Molecular Biology, 2008, 468, 5-15.	0.9	160
87	The intestinal stem cell. Genes and Development, 2008, 22, 1856-1864.	5.9	517
88	Very Long-term Self-renewal of Small Intestine, Colon, and Hair Follicles from Cycling Lgr5+ve Stem Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 351-356.	1.1	104
89	Tracking Down the Stem Cells of the Intestine: Strategies to Identify Adult Stem Cells. Gastroenterology, 2007, 133, 1755-1760.	1.3	142
90	Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 2007, 449, 1003-1007.	27.8	4,753

#	Article	IF	CITATIONS
91	WNT signaling in the normal intestine and colorectal cancer. Frontiers in Bioscience - Landmark, 2007, 12, 471.	3.0	162
92	Mining the Wnt pathway for cancer therapeutics. Nature Reviews Drug Discovery, 2006, 5, 997-1014.	46.4	670
93	The inner nuclear membrane protein Emerin regulates β-catenin activity by restricting its accumulation in the nucleus. EMBO Journal, 2006, 25, 3275-3285.	7.8	214
94	Functional Interaction Between Â-Catenin and FOXO in Oxidative Stress Signaling. Science, 2005, 308, 1181-1184.	12.6	681
95	You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Current Opinion in Genetics and Development, 2003, 13, 28-33.	3.3	219
96	Cloning and characterization of hELD/OSA1, a novel BRG1 interacting protein. Biochemical Journal, 2002, 364, 255-264.	3.7	35
97	TCF: Lady Justice Casting the Final Verdict on the Outcome of Wnt Signalling. Biological Chemistry, 2002, 383, 255-261.	2.5	185
98	Ligand activation of peroxisome proliferator-activated receptor Î ³ induces apoptosis of leukemia cells by down-regulating the c-myc gene expression via blockade of the Tcf-4 activity. Cell Death and Differentiation, 2002, 9, 513-526.	11.2	61
99	Tumor environment: a potent driving force in colorectal cancer?. Trends in Molecular Medicine, 2001, 7, 535-537.	6.7	45
100	The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO Journal, 2001, 20, 4935-4943.	7.8	385
101	Catenins, Wnt signaling and cancer. BioEssays, 2000, 22, 961-965.	2.5	208
102	Catenins, Wnt signaling and cancer. BioEssays, 2000, 22, 961-965.	2.5	4
103	The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature, 1999, 399, 798-802.	27.8	569
104	The Yin-Yang of TCF/β-Catenin Signaling. Advances in Cancer Research, 1999, 77, 1-24.	5.0	239
105	Restricted High Level Expression of Tcf-4 Protein in Intestinal and Mammary Gland Epithelium. American Journal of Pathology, 1999, 154, 29-35.	3.8	149
106	Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics, 1998, 19, 379-383.	21.4	1,441
107	Two Members of the Tcf Family Implicated in Wnt/β-Catenin Signaling during Embryogenesis in the Mouse. Molecular and Cellular Biology, 1998, 18, 1248-1256.	2.3	309
108	Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC ^{â^'/â^'} Colon Carcinoma. Science, 1997, 275, 1784-1787.	12.6	3,061

#	Article	IF	CITATIONS
109	Activation of β-Catenin-Tcf Signaling in Colon Cancer by Mutations in β-Catenin or APC. Science, 1997, 275, 1787-1790.	12.6	3,686