
Jan Bergmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8888129/publications.pdf Version: 2024-02-01

IAN REDCMANN

#	Article	IF	CITATIONS
1	Drivers of Flammability of Eucalyptus globulus Labill Leaves: Terpenes, Essential Oils, and Moisture Content. Forests, 2022, 13, 908.	2.1	8
2	Mating Disruption of Pseudococcus calceolariae (Maskell) (Hemiptera, Pseudococcidae) in Fruit Crops. Insects, 2021, 12, 343.	2.2	6
3	Monitoring Chilecomadia valdiviana (Lepidoptera: Cossidae) Using Sex Pheromone-Baited Traps in Apple Orchards in Chile. Insects, 2021, 12, 511.	2.2	4
4	Development of Monitoring and Mating Disruption against the Chilean Leafroller Proeulia auraria (Lepidoptera: Tortricidae) in Orchards. Insects, 2021, 12, 625.	2.2	4
5	Leaf Thermal and Chemical Properties as Natural Drivers of Plant Flammability of Native and Exotic Tree Species of the ValparaÃso Region, Chile. International Journal of Environmental Research and Public Health, 2021, 18, 7191.	2.6	16
6	A larval aggregation pheromone as foraging cue for insectivorous birds. Biology Letters, 2021, 17, 20210360.	2.3	4
7	Differences in volatile emissions between healthy and gall-induced branches of Haplopappus foliosus (Asteraceae). Biochemical Systematics and Ecology, 2021, 98, 104309.	1.3	3
8	Aggregation Pheromones of Weevils (Coleoptera: Curculionidae): Advances in the Identification and Potential Uses in Semiochemical-Based Pest Management Strategies. Journal of Chemical Ecology, 2021, 47, 968-986.	1.8	10
9	Tergal Gland Secretion of the Rove Beetle <i>Aleochara pseudochrysorrhoa</i> (Staphylinidae:) Tj ETQq1 1 0.784 e2000483.	1314 rgBT 2.1	/Overlock 10 6
10	3,7-Dimethylpentadecane: a Novel Sex Pheromone Component from Leucoptera sinuella (Lepidoptera:) Tj ETQqC	0 0 rgBT 1.8	/Overlock 10 4
11	Phenolic Fingerprinting, Antioxidant, and Deterrent Potentials of Persicaria maculosa Extracts. Molecules, 2020, 25, 3054.	3.8	7
12	Linoleic acid and stearic acid are biosynthetic precursors of (7Z,10Z)-7,10-hexadecadienal, the major component of the sex pheromone of Chilecomadia valdiviana (Lepidoptera: Cossidae). PLoS ONE, 2019, 14, e0215769.	2.5	6
13	Synthesis of citrophilus mealybug sex pheromone using chrysanthemol extracted from Pyrethrum (<i>Tanacetum cinerariifolium</i>). Natural Product Research, 2019, 33, 303-308.	1.8	3
14	Letter to the Editor: Official Platform for ALAEQ. Journal of Chemical Ecology, 2018, 44, 102-102.	1.8	0
15	Distribution and ultrastructure of the antennal sensilla of the grape weevil <i>Naupactus xanthographus</i> (Coleoptera: Curculionidae). Microscopy Research and Technique, 2018, 81, 590-598.	2.2	7
16	EVALUATION OF MONOLITHIC COLUMN FOR INORGANIC MERCURY AND METHYLMERCURY DETERMINATION IN FISH SAMPLE ANALYSIS. Journal of the Chilean Chemical Society, 2018, 63, 4257-4260.	1.2	2
17	Behavioral and physiological response of male Callisphyris apicicornis (Coleoptera: Cerambycidae) to virgin con-specific females' extracts. Chilean Journal of Agricultural Research, 2018, 78, 470-477.	1.1	2
18	SYNTHESIS AND FIELD TEST OF A PHEROMONE ANALOG OF CHILECOMADIA VALDIVIANA. Journal of the Chilean Chemical Society, 2018, 63, 4019-4022.	1.2	1

Jan Bergmann

#	Article	IF	CITATIONS
19	Searching Behavior of Cryptolaemus montrouzieri (Coleoptera: Coccinellidae) in Response to Mealybug Sex Pheromones. Journal of Economic Entomology, 2018, 111, 1996-1999.	1.8	4
20	Evidence that Cerambycid Beetles Mimic Vespid Wasps in Odor as well as Appearance. Journal of Chemical Ecology, 2017, 43, 75-83.	1.8	14
21	Use of Mixture Designs to Investigate Contribution of Minor Sex Pheromone Components to Trap Catch of the Carpenterworm Moth, Chilecomadia valdiviana. Journal of Chemical Ecology, 2017, 43, 1046-1055.	1.8	3
22	Identification of a Novel Moth Sex Pheromone Component from Chilecomadia valdiviana. Journal of Chemical Ecology, 2016, 42, 908-918.	1.8	16
23	Attraction to Host Plant Volatiles and Feeding Performance of Naupactus Xanthographus (Coleoptera: Curculionidae) is Affected by Starvation. Journal of Insect Behavior, 2016, 29, 48-56.	0.7	6
24	Identification of the Female Sex Pheromone of the Leafroller Proeulia triquetra Obraztsov (Lepidoptera: Tortricidae). Neotropical Entomology, 2016, 45, 351-356.	1.2	1
25	Monitoring <i>Pseudococcus calceolariae</i> (Hemiptera: Pseudococcidae) in Fruit Crops Using Pheromone-Baited Traps. Journal of Economic Entomology, 2015, 108, 2397-2406.	1.8	8
26	A 4-component sex pheromone of the Chilean fruit leaf roller Proeulia auraria (Lepidoptera:) Tj ETQq0 0 0 rgBT	Overlock 1	.0 Tf 50 462 1
27	The Absolute Configuration of the Sex Pheromone of the Citrophilous Mealybug, Pseudococcus calceolariae. Journal of Chemical Ecology, 2011, 37, 166-172.	1.8	24
28	Biological Activity of the Larval Secretion of Chilecomadia valdiviana. Journal of Chemical Ecology, 2011, 37, 1137-1142.	1.8	5
29	Chrysanthemyl 2-acetoxy-3-methylbutanoate: the sex pheromone of the citrophilous mealybug, Pseudococcus calceolariae. Tetrahedron Letters, 2010, 51, 1075-1078.	1.4	29
30	Influence of different plants substrates on development and reproduction for laboratory rearing of Pseudococcus calceolariae (Maskell) (Hemiptera: Pseudococcidae). Ciencia E Investigacion Agraria, 2010, 37, 31-37.	0.2	8
31	Insect pheromone research in South America. Journal of the Brazilian Chemical Society, 2009, 20, 1206-1219.	0.6	9
32	Synthesis of Pheromones: Highlights from 2002-2004. Current Organic Chemistry, 2009, 13, 299-338.	1.6	9
33	Synthesis of Pheromones: Highlights from 2005-2007. Current Organic Chemistry, 2009, 13, 683-719.	1.6	7
34	Identification of a Sex Pheromone Produced by Sternal Glands in Females of the Caddisfly Molanna angustata Curtis. Journal of Chemical Ecology, 2008, 34, 220-8.	1.8	23
35	Contents of the exocrine glands of the ant subfamily Cerapachyinae. Biochemical Systematics and Ecology, 2008, 36, 260-265.	1.3	7
36	Identification and synthesis of some fatty acid derivatives from larvae ofChilecomadia valdiviana(Lepidoptera: Cossidae). Natural Product Research, 2007, 21, 473-480.	1.8	3

JAN BERGMANN

#	Article	IF	CITATIONS
37	Response of workers of Atta sexdens rubropilosa (Hymenoptera: Formicidae) to mandibular gland compounds of virgin males and females. Physiological Entomology, 2007, 32, 283-286.	1.5	8
38	Enhancement of enzymatic digestion of Antarctic krill and successive extraction of selenium organic compounds by ultrasound treatment. Analytical and Bioanalytical Chemistry, 2006, 384, 244-249.	3.7	31
39	Cameraria gaultheriella and C. lobatiella attracted in Canada to (E,Z)-8,10-tetradecadienal, the sex pheromone of the European C. ohridella. Canadian Entomologist, 2006, 138, 263-268.	0.8	3
40	Distribution of elements binding to molecules with different molecular weights in aqueous extract of Antarctic krill by size-exclusion chromatography coupled with inductively coupled plasma mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 814, 83-91.	2.3	13
41	Determination of the absolute configuration of selenomethionine from antarctic krill by RP-HPLC/ICP-MS using chiral derivatization agents. Analytical and Bioanalytical Chemistry, 2004, 378, 1624-1629.	3.7	23
42	Identification and synthesis of new bicyclic acetals from caddisflies (Trichoptera). Tetrahedron Letters, 2004, 45, 3669-3672.	1.4	11
43	Female Sex Pheromone of Cameraria ohridella Desch. and Dim. (Lepidoptera: Gracillariidae): Structure Confirmation, Synthesis and Biological Activity of (8E,10Z)-8,10-tetradecadienal and Some Analogues. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 739-752.	1.4	14
44	Identification and Assignment of the Absolute Configuration of Biologically Active Methyl-Branched Ketones from Limnephilid Caddis Flies. European Journal of Organic Chemistry, 2001, 2001, 3175.	2.4	23