Jan A L Van Kan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8886651/publications.pdf

Version: 2024-02-01

38742 34986 14,662 103 50 98 citations g-index h-index papers 107 107 107 11015 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, 13, 414-430.	4.2	3,270
2	<i>Botrytis cinerea</i> : the cause of grey mould disease. Molecular Plant Pathology, 2007, 8, 561-580.	4.2	1,345
3	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	3.5	902
4	Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends in Plant Science, 2006, 11 , $247-253$.	8.8	627
5	The Endopolygalacturonase Gene Bcpg1 Is Required for Full Virulence of Botrytis cinerea. Molecular Plant-Microbe Interactions, 1998, 11, 1009-1016.	2.6	513
6	Molecular Phylogeny of the Plant Pathogenic Genus Botrytis and the Evolution of Host Specificity. Molecular Biology and Evolution, 2004, 22, 333-346.	8.9	345
7	Cloning and Characterization of cDNA of Avirulence Gene <i>avr9</i> of the Fungal Pathogen <i>Cladosporium fulvum</i> , Causal Agent of Tomato Leaf Mold. Molecular Plant-Microbe Interactions, 1991, 4, 52.	2.6	305
8	The Role of Ethylene and Wound Signaling in Resistance of Tomato to Botrytis cinerea. Plant Physiology, 2002, 129, 1341-1351.	4.8	301
9	A gapless genome sequence of the fungus <i>Botrytis cinerea</i> . Molecular Plant Pathology, 2017, 18, 75-89.	4.2	265
10	Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant Journal, 2005, 43, 213-225.	5.7	255
11	Fungal Endopolygalacturonases Are Recognized as Microbe-Associated Molecular Patterns by the Arabidopsis Receptor-Like Protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES 1 Â. Plant Physiology, 2014, 164, 352-364.	4.8	249
12	One stop shop: backbones trees for important phytopathogenic genera: I (2014). Fungal Diversity, 2014, 67, 21-125.	12.3	241
13	NADPH Oxidases Are Involved in Differentiation and Pathogenicity in <i>Botrytis cinerea</i> Molecular Plant-Microbe Interactions, 2008, 21, 808-819.	2.6	240
14	Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis Plant Journal, 1992, 2, 359-366.	5.7	233
15	Transgenic Expression of Pear PGIP in Tomato Limits Fungal Colonization. Molecular Plant-Microbe Interactions, 2000, 13, 942-950.	2.6	228
16	Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen <i>Botrytis cinerea</i> . Molecular Plant Pathology, 2019, 20, 877-892.	4.2	222
17	Differential accumulation of mRNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum. Plant Molecular Biology, 1992, 20, 513-527.	3.9	211
18	The Complete Genome Sequence of the Phytopathogenic Fungus Sclerotinia sclerotiorum Reveals Insights into the Genome Architecture of Broad Host Range Pathogens. Genome Biology and Evolution, 2017, 9, 593-618.	2. 5	187

#	Article	IF	CITATIONS
19	Many Shades of Grey in Botrytis–Host Plant Interactions. Trends in Plant Science, 2018, 23, 613-622.	8.8	172
20	Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea. European Journal of Plant Pathology, 1998, 104, 207-220.	1.7	170
21	Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Molecular Plant Pathology, 2007, 8, 41-54.	4.2	164
22	Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Molecular Microbiology, 2002, 43, 883-894.	2.5	151
23	Structure of tobacco genes encoding pathogenesis-related proteins from the PR-1 group. Nucleic Acids Research, 1987, 15, 6799-6811.	14.5	137
24	Phytotoxic Nep1â€like proteins from the necrotrophic fungus <i>Botrytis cinerea ⟨i⟩ associate with membranes and the nucleus of plant cells. New Phytologist, 2008, 177, 493-505.</i>	7.3	136
25	Regulation of endopolygalacturonase gene expression in Botrytis cinerea by galacturonic acid, ambient pH and carbon catabolite repression. Current Genetics, 2000, 37, 152-157.	1.7	131
26	Botrytis cinerea Endopolygalacturonase Genes Are Differentially Expressed in Various Plant Tissues. Fungal Genetics and Biology, 2001, 33, 97-105.	2.1	129
27	Genome Update of Botrytis cinerea Strains B05.10 and T4. Eukaryotic Cell, 2012, 11, 1413-1414.	3.4	124
28	<i>Botrytis</i> species: relentless necrotrophic thugs or endophytes gone rogue? Molecular Plant Pathology, 2014, 15, 957-961.	4.2	116
29	Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats. Fungal Genetics and Biology, 2004, 41, 963-971.	2.1	115
30	Functional analysis of an extracellular catalase of Botrytis cinerea. Molecular Plant Pathology, 2002, 3, 227-238.	4.2	114
31	Mind the gap; seven reasons to close fragmented genome assemblies. Fungal Genetics and Biology, 2016, 90, 24-30.	2.1	108
32	Molecular characterization of four chitinase cDNAs obtained fromCladosporium fulvum-infected tomato. Plant Molecular Biology, 1993, 22, 1017-1029.	3.9	107
33	Positive selection in phytotoxic protein-encoding genes of Botrytis species. Fungal Genetics and Biology, 2007, 44, 52-63.	2.1	104
34	Oxaloacetate Hydrolase, the C–C Bond Lyase of Oxalate Secreting Fungi. Journal of Biological Chemistry, 2007, 282, 9581-9590.	3.4	102
35	The Botrytis cinerea aspartic proteinase family. Fungal Genetics and Biology, 2010, 47, 53-65.	2.1	101
36	Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. Journal of Invertebrate Pathology, 2016, 133, 41-49.	3.2	101

#	Article	IF	CITATIONS
37	Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Molecular Plant Pathology, 2004, 5, 559-574.	4.2	100
38	Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10. Molecular Plant Pathology, 2005, 6, 641-652.	4.2	86
39	Induction of tomato stress protein mRNAs by ethephon, 2,6-dichloroisonicotinic acid and salicylate. Plant Molecular Biology, 1995, 27, 1205-1213.	3.9	76
40	The NADPH Oxidase Complexes in Botrytis cinerea: Evidence for a Close Association with the ER and the Tetraspanin Pls1. PLoS ONE, 2013, 8, e55879.	2.5	75
41	Comparing Arabidopsis receptor kinase and receptor proteinâ€mediated immune signaling reveals BIK1â€dependent differences. New Phytologist, 2019, 221, 2080-2095.	7.3	73
42	An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. Microbiology (United Kingdom), 2004, 150, 2475-2489.	1.8	72
43	The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theoretical and Applied Genetics, 2007, 114, 1071-1080.	3.6	72
44	The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, 13, 804-804.	4.2	72
45	The d-galacturonic acid catabolic pathway in Botrytis cinerea. Fungal Genetics and Biology, 2011, 48, 990-997.	2.1	70
46	Functional analysis and mode of action of phytotoxic Nep1-like proteins of Botrytis cinerea. Physiological and Molecular Plant Pathology, 2010, 74, 376-386.	2.5	68
47	The Contribution of Cell Wall Degrading Enzymes to Pathogenesis of Fungal Plant Pathogens. , 2002, , 341-358.		68
48	Application of differential display RT-PCR to the analysis of gene expression in a plant-fungus interaction. Plant Molecular Biology, 1996, 32, 947-957.	3.9	65
49	The transcriptional activator GaaR of <i>AspergillusÂniger</i> is required for release and utilization of <scp>dâ€</scp> galacturonic acid from pectin. FEBS Letters, 2016, 590, 1804-1815.	2.8	64
50	A Polygalacturonase-Inhibiting Protein from Grapevine Reduces the Symptoms of the Endopolygalacturonase BcPG2 from Botrytis cinerea in Nicotiana benthamiana Leaves Without Any Evidence for In Vitro Interaction. Molecular Plant-Microbe Interactions, 2007, 20, 392-402.	2.6	60
51	Subcellular localization of plant chitinases and $1,3$ - \hat{l}^2 -glucanases in Cladosporium fulvum (syn. Fulvia) Tj ETQq $1\ 1$	0.784314 2.5	rggT /Overl
52	Functional analysis of NLP genes from Botrytis elliptica. Molecular Plant Pathology, 2007, 8, 209-214.	4.2	53
53	Comparative genomics of plant pathogenic Botrytis species with distinct host specificity. BMC Genomics, 2019, 20, 203.	2.8	53
54	Analysis of Cryptic, Systemic Botrytis Infections in Symptomless Hosts. Frontiers in Plant Science, 2016, 7, 625.	3.6	51

#	Article	IF	Citations
55	Three QTLs for Botrytis cinerea resistance in tomato. Theoretical and Applied Genetics, 2007, 114, 585-593.	3.6	50
56	A Virus-Inducible Tobacco Gene Encoding a Glycine-Rich Protein Shares Putative Regulatory Elements with the Ribulose Bisphosphate Carboxylase Small Subunit Gene. Molecular Plant-Microbe Interactions, 1988, 1, 107.	2.6	50
57	The Endo-Arabinanase BcAra1 Is a Novel Host-Specific Virulence Factor of the Necrotic Fungal Phytopathogen <i>Botrytis cinerea /i>. Molecular Plant-Microbe Interactions, 2014, 27, 781-792.</i>	2.6	44
58	⟨i> <scp>B</scp> otrytis cinerea mutants deficient in <scp>d</scp> â€galacturonic acid catabolism have a perturbed virulence on <i><scp>N</scp>icotiana benthamiana</i> and <i><scp>rabidopsis</scp></i> , but not on tomato. Molecular Plant Pathology, 2013, 14, 19-29.	4.2	43
59	Natural variation in virulence of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes. Malaria Journal, 2014, 13, 479.	2.3	43
60	RNA †Information Warfare' in Pathogenic and Mutualistic Interactions. Trends in Plant Science, 2016, 21, 738-748.	8.8	42
61	Functional Analysis of Mating Type Genes and Transcriptome Analysis during Fruiting Body Development of <i>Botrytis cinerea</i> . MBio, 2018, 9, .	4.1	40
62	Distinct immune sensor systems for fungal endopolygalacturonases in closely related Brassicaceae. Nature Plants, 2021, 7, 1254-1263.	9.3	40
63	Repeated loss of an anciently horizontally transferred gene cluster in <i>Botrytis</i> . Mycologia, 2013, 105, 1126-1134.	1.9	39
64	Cloning and characterization of a glutathione S-transferase homologue from the plant pathogenic fungus Botrytis cinerea ‡. Molecular Plant Pathology, 2000, 1, 169-178.	4.2	38
65	Comparative genomics of Beauveria bassiana: uncovering signatures of virulence against mosquitoes. BMC Genomics, 2016, 17, 986.	2.8	38
66	A Novel Botrytis Species Is Associated with a Newly Emergent Foliar Disease in Cultivated Hemerocallis. PLoS ONE, 2014, 9, e89272.	2.5	35
67	Aspartic Acid Protease from Botrytis cinerea Removes Haze-Forming Proteins during White Winemaking. Journal of Agricultural and Food Chemistry, 2013, 61, 130925134142009.	5.2	33
68	Partial stem and leaf resistance against the fungal pathogen Botrytis cinerea in wild relatives of tomato. European Journal of Plant Pathology, 2007, 117, 153-166.	1.7	32
69	Plant Defence Compounds Against Botrytis Infection. , 2007, , 143-161.		31
70	A novel <scp>Z</scp> n ₂ <scp>C</scp> ys ₆ transcription factor <scp>B</scp> c <scp>G</scp> aa <scp>R</scp> regulates <scp>D</scp> â€galacturonic acid utilization in <scp><i>B</i></scp> <i>O, Scp>c<scp>C</scp></i>	2.5	31
71	Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: Identification and functional analysis of putative d -galacturonate transporters. Fungal Genetics and Biology, 2014, 72, 182-191.	2.1	30
72	Extracellular Enzymes and Metabolites Involved in Pathogenesis of Botrytis., 2007,, 99-118.		29

#	Article	IF	CITATIONS
73	Bitter and sweet make tomato hard to (b)eat. New Phytologist, 2021, 230, 90-100.	7.3	29
74	Quantitative resistance to Botrytis cinerea from Solanum neorickii. Euphytica, 2008, 159, 83-92.	1.2	27
75	Deciphering the Monilinia fructicola Genome to Discover Effector Genes Possibly Involved in Virulence. Genes, 2021, 12, 568.	2.4	23
76	The pOT and pLOB vector systems: Improving ease of transgene expression in Botrytis cinerea. Journal of General and Applied Microbiology, 2008, 54, 367-376.	0.7	22
77	The <i>FRP1</i> Fâ€box gene has different functions in sexuality, pathogenicity and metabolism in three fungal pathogens. Molecular Plant Pathology, 2011, 12, 548-563.	4.2	22
78	Experimental evolution to increase the efficacy of the entomopathogenic fungus <i>Beauveria bassiana </i> against malaria mosquitoes: Effects on mycelial growth and virulence. Evolutionary Applications, 2017, 10, 433-443.	3.1	22
79	Dynamics in Secondary Metabolite Gene Clusters in Otherwise Highly Syntenic and Stable Genomes in the Fungal Genus <i>Botrytis</i> Classical General Biology and Evolution, 2020, 12, 2491-2507.	2.5	22
80	The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, , no-no.	4.2	22
81	Functional analysis of hydrophobin genes in sexual development of Botrytis cinerea. Fungal Genetics and Biology, 2014, 71, 42-51.	2.1	21
82	Red light imaging for programmed cell death visualization and quantification in plant–pathogen interactions. Molecular Plant Pathology, 2021, 22, 361-372.	4.2	21
83	The Genome of Botrytis cinerea, a Ubiquitous Broad Host Range Necrotroph. , 2014, , 19-44.		21
84	Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea. BMC Plant Biology, 2017, 17, 235.	3.6	20
85	The obligate alkalophilic soda″ake fungus Sodiomyces alkalinus has shifted to a protein diet. Molecular Ecology, 2018, 27, 4808-4819.	3.9	20
86	The aspartic proteinase family of three Phytophthora species. BMC Genomics, 2011, 12, 254.	2.8	19
87	Inadvertent gene silencing of argininosuccinate synthase (<i>bcass1</i>) in <i>Botrytis cinerea</i> by the pLOB1 vector system. Molecular Plant Pathology, 2010, 11, 613-624.	4.2	18
88	BcSUN1, a B. cinerea SUN-Family Protein, Is Involved in Virulence. Frontiers in Microbiology, 2017, 8, 35.	3.5	18
89	Extensive Expansion of A1 Family Aspartic Proteinases in Fungi Revealed by Evolutionary Analyses of 107 Complete Eukaryotic Proteomes. Genome Biology and Evolution, 2014, 6, 1480-1494.	2.5	17
90	AFLP analysis of genetic diversity in populations of Botrytis elliptica and Botrytis tulipae from the Netherlands. European Journal of Plant Pathology, 2007, 117, 219-235.	1.7	14

#	Article	IF	Citations
91	Sexual mating of Botrytis cinerea illustrates PRP8 intein HEG activity. Fungal Genetics and Biology, 2010, 47, 392-398.	2.1	13
92	14 Pectin as a Barrier and Nutrient Source for Fungal Plant Pathogens. , 2013, , 361-375.		11
93	Peeling the Onion: Towards a Better Understanding of <i>Botrytis</i> Diseases of Onion. Phytopathology, 2021, 111, 464-473.	2.2	11
94	Comparative Genomics Used to Predict Virulence Factors and Metabolic Genes among Monilinia Species. Journal of Fungi (Basel, Switzerland), 2021, 7, 464.	3.5	11
95	Mating type and sexual fruiting body of Botrytis elliptica, the causal agent of fire blight in lily. European Journal of Plant Pathology, 2015, 142, 615-624.	1.7	9
96	Cytotoxic activity of Nep1â€like proteins on monocots. New Phytologist, 2022, 235, 690-700.	7.3	9
97	Structure and Expression In planta of Botrytis cinerea Ubiquitin Genes. European Journal of Plant Pathology, 2000, 106, 693-698.	1.7	7
98	PRP8 inteins in species of the genus Botrytis and other ascomycetes. Fungal Genetics and Biology, 2012, 49, 250-261.	2.1	7
99	Visualization of Three Sclerotiniaceae Species Pathogenic on Onion Reveals Distinct Biology and Infection Strategies. International Journal of Molecular Sciences, 2021, 22, 1865.	4.1	5
100	Fire Blight Susceptibility in Lilium spp. Correlates to Sensitivity to Botrytis elliptica Secreted Cell Death Inducing Compounds. Frontiers in Plant Science, 2021, 12, 660337.	3.6	5
101	Bcmimp1, a Botrytis cinerea Gene Transiently Expressed in planta, Encodes a Mitochondrial Protein. Frontiers in Microbiology, 2016, 7, 213.	3.5	3
102	A Major Effect Gene Controlling Development and Pathogenicity in Botrytis cinerea Identified Through Genetic Analysis of Natural Mycelial Non-pathogenic Isolates. Frontiers in Plant Science, 2021, 12, 663870.	3.6	3
103	Necrotrophic Fungi: Live and Let Die. , 0, , 645-659.		O