
David E Rupp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8886190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anthropogenic Influence on Recent Severe Autumn Fire Weather in the West Coast of the United States. Geophysical Research Letters, 2022, 49, .	4.0	41
2	Spatial patterns of extreme precipitation and their changes under ~ 2°C global warming: a large-ensemble study of the western USA. Climate Dynamics, 2022, 59, 2363-2379.	3.8	3
3	Mapping an Observation-Based Global Solar Irradiance Climatology across the Conterminous United States. Journal of Applied Meteorology and Climatology, 2022, 61, 857-876.	1.5	5
4	Increasing Daytime Stability Enhances Downslope Moisture Transport in the Subcanopy of an Evenâ€Aged Conifer Forest in Western Oregon, USA. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	5
5	Compound Extremes Drive the Western Oregon Wildfires of September 2020. Geophysical Research Letters, 2021, 48, e2021GL092520.	4.0	53
6	Changing River Network Synchrony Modulates Projected Increases in High Flows. Water Resources Research, 2021, 57, e2020WR028713.	4.2	7
7	New snow metrics for a warming world. Hydrological Processes, 2021, 35, e14262.	2.6	12
8	Influence of anthropogenic greenhouse gases on the propensity for nocturnal cold-air drainage. Theoretical and Applied Climatology, 2021, 146, 231-241.	2.8	1
9	Ubiquitous increases in flood magnitude in the Columbia River basin under climate change. Hydrology and Earth System Sciences, 2021, 25, 257-272.	4.9	8
10	The Effects of Climate Change on Interregional Electricity Market Dynamics on the U.S. West Coast. Earth's Future, 2021, 9, .	6.3	10
11	Temperature Gradients and Inversions in a Forested Cascade Range Basin: Synoptic―to Localâ€6cale Controls. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032686.	3.3	13
12	Streamflow Recession Analysis Using Water Height. Water Resources Research, 2020, 56, e2020WR027091.	4.2	3
13	Recession analysis revisited: impacts of climate on parameter estimation. Hydrology and Earth System Sciences, 2020, 24, 1159-1170.	4.9	32
14	Climate change alters flood magnitudes and mechanisms in climatically-diverse headwaters across the northwestern United States. Environmental Research Letters, 2020, 15, 094048.	5.2	31
15	How Do Modeling Decisions Affect the Spread Among Hydrologic Climate Change Projections? Exploring a Large Ensemble of Simulations Across a Diversity of Hydroclimates. Earth's Future, 2019, 7, 623-637.	6.3	75
16	Parametric Sensitivity of Vegetation Dynamics in the TRIFFID Model and the Associated Uncertainty in Projected Climate Change Impacts on Western U.S. Forests. Journal of Advances in Modeling Earth Systems, 2019, 11, 2787-2813.	3.8	11
17	Reducing climate model biases by exploring parameter space with large ensembles of climate model simulations and statistical emulation. Geoscientific Model Development, 2019, 12, 3017-3043.	3.6	11
18	Nearâ€future forest vulnerability to drought and fire varies across the western United States. Global Change Biology, 2019, 25, 290-303.	9.5	76

DAVID E RUPP

#	Article	IF	CITATIONS
19	Comment on "Base Flow Recession from Unsaturatedâ€6aturated Porous Media considering Lateral Unsaturated Discharge and Aquifer Compressibility―by Liang, X., H. Zhan, Y.â€K. Zhang, and K. Schilling (2017). Water Resources Research, 2018, 54, 3217-3219.	4.2	2
20	Seasonal spatial patterns of projected anthropogenic warming in complex terrain: a modeling study of the western US. Climate Dynamics, 2017, 48, 2191-2213.	3.8	44
21	Influence of the Ocean and Greenhouse Gases on Severe Drought Likelihood in the Central United States in 2012. Journal of Climate, 2017, 30, 1789-1806.	3.2	6
22	Less warming projected during heavy winter precipitation in the Cascades and Sierra Nevada. International Journal of Climatology, 2017, 37, 3984-3990.	3.5	9
23	Evaluating climate model simulations of drought for the northwestern United States. International Journal of Climatology, 2017, 37, 910-920.	3.5	14
24	Improved streamflow recession parameter estimation with attention to calculation of â^' dQ/dt. Advances in Water Resources, 2017, 108, 29-43.	3.8	43
25	Projections of 21st century climate of the Columbia River Basin. Climate Dynamics, 2017, 49, 1783-1799.	3.8	57
26	Perspectives on the causes of exceptionally low 2015 snowpack in the western United States. Geophysical Research Letters, 2016, 43, 10,980.	4.0	85
27	Superensemble Regional Climate Modeling for the Western United States. Bulletin of the American Meteorological Society, 2016, 97, 203-215.	3.3	32
28	Selecting climate change scenarios using impactâ€relevant sensitivities. Geophysical Research Letters, 2015, 42, 5516-5525.	4.0	48
29	Anthropogenic influence on the changing likelihood of an exceptionally warm summer in Texas, 2011. Geophysical Research Letters, 2015, 42, 2392-2400.	4.0	19
30	Climate change, climate justice and the application of probabilistic event attribution to summer heat extremes in the California Central Valley. Climatic Change, 2015, 133, 427-438.	3.6	17
31	Evaluation of a Regional Climate Modeling Effort for the Western United States Using a Superensemble from Weather@home*. Journal of Climate, 2015, 28, 7470-7488.	3.2	28
32	Seasonal Climate Variability and Change in the Pacific Northwest of the United States. Journal of Climate, 2014, 27, 2125-2142.	3.2	177
33	Detection and Attribution of Observed Changes in Northern Hemisphere Spring Snow Cover. Journal of Climate, 2013, 26, 6904-6914.	3.2	65
34	The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves Parlange. Water Resources Research, 2013, 49, 5099-5116.	4.2	114
35	Evaluation of CMIP5 20 th century climate simulations for the Pacific Northwest USA. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,884.	3.3	238
36	Lateâ€ŧime drainage from a sloping Boussinesq aquifer. Water Resources Research, 2013, 49, 7498-7507.	4.2	22

DAVID E RUPP

#	Article	IF	CITATIONS
37	Multiplicative cascade models for fine spatial downscaling of rainfall: parameterization with rain gauge data. Hydrology and Earth System Sciences, 2012, 16, 671-684.	4.9	21
38	Marine environmentâ€based forecasting of coho salmon (<i>Oncorhynchus kisutch</i>) adult recruitment. Fisheries Oceanography, 2012, 21, 1-19.	1.7	45
39	Random cascade driven rainfall disaggregation for urban hydrology: An evaluation of six models and a new generator. Atmospheric Research, 2011, 99, 563-578.	4.1	52
40	Distributions of microcanonical cascade weights of rainfall at small timescales. Acta Geophysica, 2011, 59, 1013-1043.	2.0	15
41	Analytical assessment and parameter estimation of a low-dimensional groundwater model. Journal of Hydrology, 2009, 377, 143-154.	5.4	54
42	Consistency between hydrological models and field observations: linking processes at the hillslope scale to hydrological responses at the watershed scale. Hydrological Processes, 2009, 23, 311-319.	2.6	128
43	Time scale and intensity dependency in multiplicative cascades for temporal rainfall disaggregation. Water Resources Research, 2009, 45, .	4.2	58
44	Comment on â€~CP. Tung, NM. Hong, CH. Chen and YC. Tan, Regional daily baseflow prediction.Hydrological Processes, 18(2004) 2147–2164'. Hydrological Processes, 2008, 22, 883-886.	2.6	4
45	Comment on "Flow resistance equations without explicit estimation of the resistance coefficient for coarse-grained rivers―by Raúl López, Javier Barragán, and M. Àngels Colomer. Journal of Hydrology, 2007, 346, 174-178.	5.4	4
46	On the use of the Boussinesq equation for interpreting recession hydrographs from sloping aquifers. Water Resources Research, 2006, 42, .	4.2	136
47	Information, artifacts, and noise in dQ/dtâ^'Q recession analysis. Advances in Water Resources, 2006, 29, 154-160.	3.8	112
48	A Modification to the Bouwer and Rice Method of Slug-Test Analysis for Large-Diameter, Hand-Dug Wells. Ground Water, 2001, 39, 308-314.	1.3	9