

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8886057/publications.pdf Version: 2024-02-01

\X/F1\X/F1

#	Article	IF	CITATIONS
1	Phytoplasma Infection Blocks Starch Breakdown and Triggers Chloroplast Degradation, Leading to Premature Leaf Senescence, Sucrose Reallocation, and Spatiotemporal Redistribution of Phytohormones. International Journal of Molecular Sciences, 2022, 23, 1810.	4.1	8
2	The agent associated with blue dwarf disease in wheat represents a new phytoplasma taxon, â€~Candidatus Phytoplasma tritici'. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	26
3	Integration of metabolomics and existing omics data reveals new insights into phytoplasma-induced metabolic reprogramming in host plants. PLoS ONE, 2021, 16, e0246203.	2.5	18
4	Identification of Phytoplasmas Representing Multiple New Genetic Lineages from Phloem-Feeding Leafhoppers Highlights the Diversity of Phytoplasmas and Their Potential Vectors. Pathogens, 2021, 10, 352.	2.8	10
5	Screening potential insect vectors in a museum biorepository reveals undiscovered diversity of plant pathogens in natural areas. Ecology and Evolution, 2021, 11, 6493-6503.	1.9	8
6	Molecular identification and characterization of â€~Candidatus Phytoplasma convolvuli'-related strains (representing a new 16SrXII-O subgroup) associated with papaya bunchy top disease in Nigeria. Crop Protection, 2021, 148, 105731.	2.1	4
7	Multilocus Genotyping Reveals New Molecular Markers for Differentiating Distinct Genetic Lineages among "Candidatus Phytoplasma Solani―Strains Associated with Grapevine Bois Noir. Pathogens, 2020, 9, 970.	2.8	5
8	Spatiotemporal dynamics and quantitative analysis of phytoplasmas in insect vectors. Scientific Reports, 2020, 10, 4291.	3.3	20
9	First Report of Bougainvillea Floral Bract Proliferation Disease in Cuba and Its Association with Phytoplasmal Infection. Plant Disease, 2020, 104, 967-967.	1.4	0
10	A Survey of Potential Insect Vectors of Mountain Pine Proliferation Decline Phytoplasma in Curonian Spit, Lithuania. , 2020, 3, .		0
11	Transcriptome analysis reveals a complex array of differentially expressed genes accompanying a sourceâ€toâ€sink change in phytoplasmaâ€infected sweet cherry leaves. Annals of Applied Biology, 2019, 175, 69-82.	2.5	4
12	New Symptoms Identified in Phytoplasma-Infected Plants Reveal Extra Stages of Pathogen-Induced Meristem Fate-Derailment. Molecular Plant-Microbe Interactions, 2019, 32, 1314-1323.	2.6	14
13	Complete Genome Sequence of Spiroplasma phoeniceum Strain P40 T , a Plant Pathogen Isolated from Diseased Plants of Madagascar Periwinkle [Catharanthus roseus (L.) G. Don]. Microbiology Resource Announcements, 2019, 8, .	0.6	2
14	First Report of Sugarcane Yellow Leaf Disease in Mexico and Detection of â€~Candidatus Phytoplasma asteris'-Related Strains in Affected Plants. Plant Disease, 2019, 103, 1015.	1.4	1
15	Phytoplasma inoculum titre and inoculation timing influence symptomdevelopment in newly infected plants. Phytopathogenic Mollicutes, 2019, 9, 115.	0.1	2
16	Multilocus genotyping identifies a highly homogeneous phytoplasma lineage associated with sweet cherry virescence disease in China and its carriage by an erythroneurine leafhopper. Crop Protection, 2018, 106, 13-22.	2.1	13
17	Identification of new -J and -K 16SrXII subgroups and distinct single nucleotide polymorphism genetic lineages among â€~Candidatus Phytoplasma solani' strains associated with bois noir in Central Italy. Australasian Plant Pathology, 2017, 46, 31-34.	1.0	13
18	â€~ Candidatus Phytoplasma brasiliense'-related strains associated with papaya bunchy top disease in northern Peru represent a distinct geographic lineage. Crop Protection, 2017, 92, 99-106.	2.1	7

WEI WEI

#	Article	IF	CITATIONS
19	Novel phytoplasma strains of Xâ€disease group unveil genetic markers that distinguish North American and South American geographic lineages within subgroups 16SrIllâ€J and 16SrIllâ€U. Annals of Applied Biology, 2017, 171, 405-416.	2.5	8
20	First Report of a New Grapevine Yellows Disease in Peru and its Association With Infection by a â€~ <i>Candidatus</i> Phytoplasma brasiliense'-Related Phytoplasma Strain. Plant Disease, 2017, 101, 502-502.	1.4	5
21	â€~Candidatus Phytoplasma luffae', a novel taxon associated with witches' broom disease of loofah, Luffa aegyptica Mill. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 3127-3133.	1.7	33
22	â€~Candidatus Phytoplasma wodyetiae', a new taxon associated with yellow decline disease of foxtail palm (Wodyetia bifurcata) in Malaysia. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 3765-3772.	1.7	42
23	Multilocus genotyping of a â€~ <i>Candidatus</i> <scp>P</scp> hytoplasma aurantifolia'â€related strain associated with cauliflower phyllody disease in <scp>C</scp> hina. Annals of Applied Biology, 2016, 169, 64-74.	2.5	14
24	Evidence for the role of an invasive weed in widespread occurrence of phytoplasma diseases in diverse vegetable crops: Implications from lineage-specific molecular markers. Crop Protection, 2016, 89, 193-201.	2.1	10
25	Development of molecular markers and a diagnostic tool for investigation of coinfections by and interactions between potato purple top and potato witches'-broom phytoplasmas in tomato. Annals of Applied Biology, 2016, 168, 133-141.	2.5	8
26	â€~Candidatus Phytoplasma hispanicum', a novel taxon associated with Mexican periwinkle virescence disease of Catharanthus roseus. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3463-3467.	1.7	38
27	Occurrence, distribution and possible functional roles of simple sequence repeats in phytoplasma genomes. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 2748-2760.	1.7	6
28	Should â€~Candidatus Phytoplasma' be retained within the order Acholeplasmatales?. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1075-1082.	1.7	40
29	Unraveling the Etiology of North American Grapevine Yellows (NAGY): Novel NAGY Phytoplasma Sequevars Related to â€~ <i>Candidatu</i> s Phytoplasma pruni'. Plant Disease, 2015, 99, 1087-1097.	1.4	23
30	Phytoplasma Genomes: Evolution Through Mutually Complementary Mechanisms, Gene Loss and Horizontal Acquisition. , 2014, , 235-271.		22
31	Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19149-19154.	7.1	39
32	The iPhyClassifier, an Interactive Online Tool for Phytoplasma Classification and Taxonomic Assignment. Methods in Molecular Biology, 2013, 938, 329-338.	0.9	45
33	â€~ Candidatus Phytoplasma solani', a novel taxon associated with stolbur- and bois noir-related diseases of plants. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2879-2894.	1.7	190
34	Potato purple top phytoplasmaâ€induced disruption of gibberellin homeostasis in tomato plants. Annals of Applied Biology, 2013, 162, 131-139.	2.5	18
35	Role of gibberellic acid in tomato defence against potato purple top phytoplasma infection. Annals of Applied Biology, 2013, 162, 191-199.	2.5	21
36	â€~Candidatus Phytoplasma sudamericanum', a novel taxon, and strain PassWB-Br4, a new subgroup 16SrIII-V phytoplasma, from diseased passion fruit (Passiflora edulis f. flavicarpa Deg.). International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 984-989.	1.7	47

WEI WEI

#	Article	IF	CITATIONS
37	Identification of two new phylogenetically distant phytoplasmas from <i><scp>S</scp>enna surattensis</i> plants exhibiting stem fasciation and shoot proliferation symptoms. Annals of Applied Biology, 2012, 160, 25-34.	2.5	21
38	Salicylic acidâ€mediated elicitation of tomato defence against infection by potato purple top phytoplasma. Annals of Applied Biology, 2012, 161, 36-45.	2.5	27
39	Molecular identification and characterization of a new phytoplasma strain associated with Chinese chestnut yellow crinkle disease in China. Forest Pathology, 2011, 41, 233-236.	1.1	4
40	A new phytoplasma associated with little leaf disease in azalea: multilocus sequence characterization reveals a distinct lineage within the aster yellows phytoplasma group. Annals of Applied Biology, 2011, 158, 318-330.	2.5	28
41	Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 2582-2593.	1.7	495
42	'Candidatus Phytoplasma tamaricis', a novel taxon discovered in witches'-broom-diseased salt cedar (Tamarix chinensis Lour.). International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 2496-2504.	1.7	52
43	New 16Sr subgroups and distinct single nucleotide polymorphism lineages among grapevine Bois noir phytoplasma populations. Annals of Applied Biology, 2009, 154, 279-289.	2.5	43
44	Genetic diversity among phytoplasmas infecting Opuntia species: virtual RFLP analysis identifies new subgroups in the peanut witches'-broom phytoplasma group. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1448-1457.	1.7	64
45	Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2368-2377.	1.7	142
46	Ancient, recurrent phage attacks and recombination shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11827-11832.	7.1	82
47	Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1855-1867.	1.7	307
48	Molecular Identification of a New Phytoplasma Strain Associated with the First Observation of Jujube Witches'-Broom Disease in Northeastern China. Plant Disease, 2007, 91, 1364-1364.	1.4	4
49	First Report of a Natural Infection of Opuntia sp. by a â€~Candidatus Phytoplasma asteris'-Related Phytoplasma in China. Plant Disease, 2007, 91, 461-461.	1.4	6
50	Growth inhibition of phytopathogenic spiroplasmas by membraneâ€interactive antimicrobial peptides Novispirin T7 and Caerin 1.1. Annals of Applied Biology, 0, , .	2.5	3
51	New genetically distinct phytoplasmas and insect carriers associated with pine tree disease revealed by a survey in Curonian Spit, Lithuania. Canadian Journal of Forest Research, O, , .	1.7	1