
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8885860/publications.pdf Version: 2024-02-01

Μλατιν Βάλνοι

#	Article	IF	CITATIONS
1	Best practices in current models mimicking drug permeability in the gastrointestinal tract - An UNGAP review. European Journal of Pharmaceutical Sciences, 2022, 170, 106098.	4.0	29
2	Modulation of Paracellular-like Drug Transport across an Artificial Biomimetic Barrier by Osmotic Stress-Induced Liposome Shrinking. Pharmaceutics, 2022, 14, 721.	4.5	7
3	Microdialysis and nanofiltration allow to distinguish molecularly dissolved from colloid-associated drug concentrations during biomimetic dissolution testing of supersaturating formulations. European Journal of Pharmaceutical Sciences, 2022, 174, 106166.	4.0	11
4	Biopredictive capability assessment of two dissolution/permeation assays, µFLUX™ and PermeaLoop™, using supersaturating formulations of Posaconazole. European Journal of Pharmaceutical Sciences, 2022, 176, 106260.	4.0	11
5	Do Phospholipids Boost or Attenuate Drug Absorption? InÂVitro and InÂVivo Evaluation of Mono- and Diacyl Phospholipid-Based Solid Dispersions of Celecoxib. Journal of Pharmaceutical Sciences, 2021, 110, 198-207.	3.3	8
6	†Stirred not Shaken!' Comparing Agitation Methods for Permeability Studies Using a Novel Type of 96-Well Sandwich-Plates. Journal of Pharmaceutical Sciences, 2021, , .	3.3	6
7	Identification and quantification of glucose degradation products in heat-sterilized glucose solutions for parenteral use by thin-layer chromatography. PLoS ONE, 2021, 16, e0253811.	2.5	4
8	Re article "Evaluation of limulus amebocyte lysate and recombinant endotoxin alternative assays for an assessment of endotoxin detection specificityâ€, published in European Journal of Pharmaceutical Sciences 159 (2021) 105716. European Journal of Pharmaceutical Sciences, 2021, 163, 105877.	4.0	1
9	Application of Asymmetrical Flow Field-Flow Fractionation for Characterizing the Size and Drug Release Kinetics of Theranostic Lipid Nanovesicles. International Journal of Molecular Sciences, 2021, 22, 10456.	4.1	7
10	Quantification of Degradation Products Formed during Heat Sterilization of Glucose Solutions by LC-MS/MS: Impact of Autoclaving Temperature and Duration on Degradation. Pharmaceuticals, 2021, 14, 1121.	3.8	10
11	Dissolution/Permeation of Albendazole in the Presence of Cyclodextrin and Bile Salts: A Mechanistic In-Vitro Study into Factors Governing Oral Bioavailability. Journal of Pharmaceutical Sciences, 2021, , .	3.3	13
12	Dissolution/permeation with PermeaLoopâ,,¢: Experience and IVIVC exemplified by dipyridamole enabling formulations. European Journal of Pharmaceutical Sciences, 2020, 154, 105532.	4.0	18
13	(Sub)micron particles forming in aqueous dispersions of amorphous solid dispersions of the poorly soluble drug ABT-199: A combined particle optical counting and field-flow fractionation study. European Journal of Pharmaceutical Sciences, 2020, 154, 105497.	4.0	7
14	Drug Permeability Profiling Using the Novel Permeapad® 96-Well Plate. Pharmaceutical Research, 2020, 37, 93.	3.5	35
15	The influence of liquid intake on the performance of an amorphous solid dispersion in rats. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 152, 296-298.	4.3	3
16	Exploring impact of supersaturated lipid-based drug delivery systems of celecoxib on in vitro permeation across PermeapadⓇ membrane and in vivo absorption. European Journal of Pharmaceutical Sciences, 2020, 152, 105452.	4.0	17
17	Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. European Journal of Pharmaceutical Sciences, 2019, 137, 104967.	4.0	222
18	High-Throughput Dissolution/Permeation Screening—A 96-Well Two-Compartment Microplate Approach. Pharmaceutics, 2019, 11, 227.	4.5	17

#	Article	IF	CITATIONS
19	Co-existing colloidal phases of human duodenal aspirates: Intraindividual fluctuations and interindividual variability in relation to molecular composition. Journal of Pharmaceutical and Biomedical Analysis, 2019, 170, 22-29.	2.8	13
20	2. Solubility and supersaturation. , 2019, , 27-70.		2
21	A dynamic in vitro permeation study on solid mono- and diacyl-phospholipid dispersions of celecoxib. European Journal of Pharmaceutical Sciences, 2019, 127, 199-207.	4.0	23
22	Oromucosal drug delivery: Trends in in-vitro biopharmaceutical assessment of new chemical entities and formulations. European Journal of Pharmaceutical Sciences, 2019, 128, 112-117.	4.0	22
23	Drug permeability profiling using cell-free permeation tools: Overview and applications. European Journal of Pharmaceutical Sciences, 2018, 119, 219-233.	4.0	139
24	Co-existing colloidal phases in artificial intestinal fluids assessed by AF4/MALLS and DLS: A systematic study into cholate & (lyso-) phospholipid blends, incorporating celecoxib as a model drug. European Journal of Pharmaceutical Sciences, 2018, 120, 61-72.	4.0	13
25	PermeaLoopâ"¢, a novel in vitro tool for small-scale drug-dissolution/permeation studies. Journal of Pharmaceutical and Biomedical Analysis, 2018, 156, 247-251.	2.8	27
26	Archaeal lipids in oral delivery of therapeutic peptides. European Journal of Pharmaceutical Sciences, 2017, 108, 101-110.	4.0	35
27	Evaluation of a dynamic dissolution/permeation model: Mutual influence of dissolution and barrier-flux under non-steady state conditions. International Journal of Pharmaceutics, 2017, 522, 50-57.	5.2	24
28	Characterization of co-existing colloidal structures in fasted state simulated fluids FaSSIF: A comparative study using AF4/MALLS, DLS and DOSY. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145, 531-536.	2.8	15
29	Surfactants enhance recovery of poorly soluble drugs during microdialysis sampling: Implications for in vitro dissolution-/permeation-studies. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145, 586-592.	2.8	11
30	Oral bioavailability enhancement through supersaturation: an update and meta-analysis. Expert Opinion on Drug Delivery, 2017, 14, 403-426.	5.0	68
31	A novel microdialysis-dissolution/permeation system for testing oral dosage forms: A proof-of-concept study. European Journal of Pharmaceutical Sciences, 2017, 96, 154-163.	4.0	16
32	Dynamic dissolution-/permeation-testing of nano- and microparticle formulations of fenofibrate. European Journal of Pharmaceutical Sciences, 2017, 96, 20-27.	4.0	47
33	The use of asymmetrical flow field-flow fractionation with on-line detection in the study of drug retention within liposomal nanocarriers and drug transfer kinetics. Journal of Pharmaceutical and Biomedical Analysis, 2016, 124, 157-163.	2.8	20
34	Bile Salt Micelles and Phospholipid Vesicles Present in Simulated and Human Intestinal Fluids: Structural Analysis by Flow Field–Flow Fractionation/Multiangle Laser Light Scattering. Journal of Pharmaceutical Sciences, 2016, 105, 2832-2839.	3.3	36
35	Mechanism and kinetics of the loss of poorly soluble drugs from liposomal carriers studied by a novel flow field-flow fractionation-based drug release â~'/transfer-assay. Journal of Controlled Release, 2016, 232, 228-237.	9.9	25
36	Filter-extruded liposomes revisited: a study into size distributions and morphologies in relation to lipid-composition and process parameters. Journal of Liposome Research, 2016, 26, 11-20.	3.3	34

#	Article	IF	CITATIONS
37	A new approach for a blood-brain barrier model based on phospholipid vesicles: Membrane development and siRNA-loaded nanoparticles permeability. Journal of Membrane Science, 2016, 503, 8-15.	8.2	8
38	Solid Phospholipid Dispersions for Oral Delivery of Poorly Soluble Drugs: Investigation Into Celecoxib Incorporation and Solubility-InÂVitro Permeability Enhancement. Journal of Pharmaceutical Sciences, 2016, 105, 1113-1123.	3.3	37
39	The Effects of Temperature and Growth Phase on the Lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii. Life, 2015, 5, 1539-1566.	2.4	38
40	Structural characterization of ether lipids from the archaeon <i>Sulfolobus islandicus</i> by high-resolution shotgun lipidomics. Journal of Mass Spectrometry, 2015, 50, 476-487.	1.6	35
41	Liposomes containing lipids from Sulfolobus islandicus withstand intestinal bile salts: An approach for oral drug delivery?. International Journal of Pharmaceutics, 2015, 493, 63-69.	5.2	26
42	Phospholipid-based solid drug formulations for oral bioavailability enhancement: A meta-analysis. European Journal of Pharmaceutical Sciences, 2015, 80, 89-110.	4.0	37
43	Asymmetrical flow field-flow fractionation with on-line detection for drug transfer studies: a feasibility study. Analytical and Bioanalytical Chemistry, 2014, 406, 7827-7839.	3.7	29
44	What Is the Mechanism Behind Increased Permeation Rate of a Poorly Soluble Drug from Aqueous Dispersions of an Amorphous Solid Dispersion?. Journal of Pharmaceutical Sciences, 2014, 103, 1779-1786.	3.3	91
45	Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride. Journal of Liposome Research, 2014, 24, 323-335.	3.3	44
46	Liposomal formulations of poorly soluble camptothecin: drug retention and biodistribution. Journal of Liposome Research, 2013, 23, 70-81.	3.3	28
47	Biopharmaceutical classification of poorly soluble drugs with respect to "enabling formulations― European Journal of Pharmaceutical Sciences, 2013, 50, 8-16.	4.0	158
48	Physicochemical characterization of liposomes after ultrasound exposure – Mechanisms of drug release. Journal of Pharmaceutical and Biomedical Analysis, 2013, 78-79, 118-122.	2.8	36
49	Relative Spatial Positions of Tryptophan and Cationic Residues in Helical Membrane-active Peptides Determine Their Cytotoxicity. Journal of Biological Chemistry, 2012, 287, 233-244.	3.4	47
50	Amorphous solid dispersion enhances permeation of poorly soluble ABT-102: True supersaturation vs. apparent solubility enhancement. International Journal of Pharmaceutics, 2012, 437, 288-293.	5.2	129
51	Brain delivery of camptothecin by means of solid lipid nanoparticles: Formulation design, in vitro and in vivo studies. International Journal of Pharmaceutics, 2012, 439, 49-62.	5.2	104
52	Oral bioavailability of ketoprofen in suspension and solution formulations in rats: the influence of poloxamer 188. Journal of Pharmacy and Pharmacology, 2012, 64, 1631-1637.	2.4	13
53	The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility. International Journal of Nanomedicine, 2012, 7, 5757.	6.7	37
54	Application of simulated intestinal fluid on the phospholipid vesicle-based drug permeation assay. International Journal of Pharmaceutics, 2012, 422, 52-58.	5.2	14

#	Article	lF	CITATIONS
55	In vitro models to evaluate the permeability of poorly soluble drug entities: Challenges and perspectives. European Journal of Pharmaceutical Sciences, 2012, 45, 235-250.	4.0	113
56	Multivariate design for the evaluation of lipid and surfactant composition effect for optimisation of lipid nanoparticles. European Journal of Pharmaceutical Sciences, 2012, 45, 613-623.	4.0	51
57	Impact of FaSSIF on the solubility and dissolution-/permeation rate of a poorly water-soluble compound. European Journal of Pharmaceutical Sciences, 2012, 47, 16-20.	4.0	61
58	Liposomal solubilization of new 3-hydroxy-quinolinone derivatives with promising anticancer activity: a screening method to identify maximum incorporation capacity. Journal of Liposome Research, 2011, 21, 272-278.	3.3	26
59	Effect of the non-ionic surfactant Poloxamer 188 on passive permeability of poorly soluble drugs across Caco-2 cell monolayers. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 416-422.	4.3	67
60	In-vitro permeability of poorly water soluble drugs in the phospholipid vesicle-based permeation assay: the influence of nonionic surfactants. Journal of Pharmacy and Pharmacology, 2011, 63, 1022-1030.	2.4	56
61	Ultrasound-mediated destabilization and drug release from liposomes comprising dioleoylphosphatidylethanolamine. European Journal of Pharmaceutical Sciences, 2011, 42, 380-386.	4.0	40
62	Sonosensitive dioleoylphosphatidylethanolamine-containing liposomes with prolonged blood circulation time of doxorubicin. European Journal of Pharmaceutical Sciences, 2011, 43, 318-324.	4.0	21
63	Compressibility study of quaternary phospholipid blend monolayers. Colloids and Surfaces B: Biointerfaces, 2011, 85, 153-160.	5.0	4
64	Lipid membrane composition influences drug release from dioleoylphosphatidylethanolamine-based liposomes on exposure to ultrasound. International Journal of Pharmaceutics, 2011, 406, 114-116.	5.2	34
65	Solubilization of ibuprofen with β-cyclodextrin derivatives: Energetic and structural studies. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 446-451.	2.8	56
66	Vesicular phospholipid gel-based depot formulations for pharmaceutical proteins: Development and in vitro evaluation. Journal of Controlled Release, 2010, 142, 319-325.	9.9	46
67	Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media. European Journal of Pharmaceutical Sciences, 2010, 40, 25-32.	4.0	96
68	In situ formation of nanoparticles upon dispersion of melt extrudate formulations in aqueous medium assessed by asymmetrical flow field-flow fractionation. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 359-365.	2.8	67
69	Liposome fractionation and size analysis by asymmetrical flow field-flow fractionation/multi-angle light scattering: influence of ionic strength and osmotic pressure of the carrier liquid. Chemistry and Physics of Lipids, 2010, 163, 141-147.	3.2	69
70	Vesicular Phospholipid Gels. Methods in Molecular Biology, 2010, 605, 205-212.	0.9	9
71	Distearoylphosphatidylethanolamine-based liposomes for ultrasound-mediated drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75, 327-333.	4.3	66
72	In-vitro permeability screening of melt extrudate formulations containing poorly water-soluble drug compounds using the phospholipid vesicle-based barrier. Journal of Pharmacy and Pharmacology, 2010, 62, 1591-1598.	2.4	42

#	Article	IF	CITATIONS
73	Asymmetric flow fieldâ€flow fractionation of liposomes: optimization of fractionation variables. Journal of Separation Science, 2009, 32, 1465-1470.	2.5	49
74	Asymmetric flow fieldâ€flow fractionation of liposomes: 2. Concentration detection and adsorptive loss phenomena. Journal of Separation Science, 2009, 32, 3555-3561.	2.5	37
75	Altered Activity and Physicochemical Properties of Short Cationic Antimicrobial Peptides by Incorporation of Arginine Analogues. Molecular Pharmaceutics, 2009, 6, 996-1005.	4.6	45
76	Drug permeability across a phospholipid vesicle-based barrier. European Journal of Pharmaceutical Sciences, 2008, 34, 173-180.	4.0	48
77	Vesicular Phospholipid Gels: A Technology Platform. Journal of Liposome Research, 2007, 17, 15-26.	3.3	28
78	Drug permeability across a phospholipid vesicle based barrier: 3. Characterization of drug–membrane interactions and the effect of agitation on the barrier integrity and on the permeability. European Journal of Pharmaceutical Sciences, 2007, 30, 324-332.	4.0	39
79	Liposome Size Analysis by Dynamic/Static Light Scattering upon Size Exclusion-/Field Flow-Fractionation. Journal of Nanoscience and Nanotechnology, 2006, 6, 3025-3031.	0.9	69
80	Drug permeability across a phospholipid vesicle based barrier: A novel approach for studying passive diffusion. European Journal of Pharmaceutical Sciences, 2006, 27, 80-90.	4.0	148
81	Drug permeability across a phospholipid vesicle-based barrier. European Journal of Pharmaceutical Sciences, 2006, 28, 336-343.	4.0	67
82	Vesicular Phospholipid Gels. , 2006, , 241-260.		3
83	Camptothecin-catalyzed phospholipid hydrolysis in liposomes. International Journal of Pharmaceutics, 2005, 288, 73-80.	5.2	24
84	Development and in vitro evaluation of a liposome based implant formulation for the decapeptide cetrorelix. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59, 439-448.	4.3	29
85	Adsorption of the decapeptide Cetrorelix depends both on the composition of dissolution medium and the type of solid surface. European Journal of Pharmaceutical Sciences, 2004, 21, 191-196.	4.0	35
86	A method to determine the incorporation capacity of camptothecin in liposomes. AAPS PharmSciTech, 2004, 5, 30-37.	3.3	26
87	Effect of hydroxypropyl-?-cyclodextrin-complexation and pH on solubility of camptothecin. International Journal of Pharmaceutics, 2004, 284, 61-68.	5.2	48
88	Development and validation of a HPLC method for routine quantification of the decapeptide Cetrorelix in liposome dispersions. Journal of Pharmaceutical and Biomedical Analysis, 2004, 34, 963-969.	2.8	17
89	Cytotoxic effect of different camptothecin formulations on human colon carcinoma in vitro. Anti-Cancer Drugs, 2004, 15, 899-906.	1.4	19
90	Assessing the accuracy of routine photon correlation spectroscopy analysis of heterogeneous size distributions. AAPS PharmSciTech, 2003, 4, 62-70.	3.3	23

#	Article	IF	CITATIONS
91	Quantification of various phosphatidylcholines in liposomes by enzymatic assay. AAPS PharmSciTech, 2003, 4, 500-505.	3.3	25
92	5-Fluorouracil in vesicular phospholipid gels for anticancer treatment: entrapment and release properties. International Journal of Pharmaceutics, 2003, 256, 123-131.	5.2	92
93	Pharmacokinetics and antitumor activity of vincristine entrapped in vesicular phospholipid gels. Anti-Cancer Drugs, 2002, 13, 797-805.	1.4	15
94	Change in pharmacokinetic and pharmacodynamic behavior of gemcitabine in human tumor xenografts upon entrapment in vesicular phospholipid gels. Cancer Chemotherapy and Pharmacology, 2002, 49, 356-366.	2.3	72
95	Determination of the size distribution of liposomes by SEC fractionation, and PCS analysis and enzymatic assay of lipid content. AAPS PharmSciTech, 2002, 3, 9-15.	3.3	20
96	Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. International Journal of Pharmaceutics, 2001, 223, 55-68.	5.2	207
97	Steam sterilisation of vesicular phospholipid gels. International Journal of Pharmaceutics, 2001, 217, 161-172.	5.2	42
98	Effect of nucleoside analogues and oligonucleotides on hydrolysis of liposomal phospholipids. International Journal of Pharmaceutics, 2000, 206, 43-53.	5.2	20
99	Erosion and controlled release properties of semisolid vesicular phospholipid dispersions. Journal of Controlled Release, 1998, 55, 261-270.	9.9	31
100	Preparation and characterization of semi-solid phospholipid dispersions and dilutions thereof. International Journal of Pharmaceutics, 1998, 170, 187-199.	5.2	43
101	Morphology of semisolid aqueous phosphatidylcholine dispersions, a freeze fracture electron microscopy study. Chemistry and Physics of Lipids, 1997, 87, 65-72.	3.2	38
102	Biodistribution and Computed tomography Blood-Pool Imaging Properties of Polyethylene Glycol-Coated Iopromide-Carrying Liposomes. Investigative Radiology, 1997, 32, 44-50.	6.2	51
103	Liposomes with nifedipine and nifedipine-cyclodextrin complex: calorimetrical and plasma stability comparison. European Journal of Pharmaceutical Sciences, 1996, 4, 359-366.	4.0	45
104	Surface modification of continuously extruded contrast-carrying liposomes: Effect on their physical properties. International Journal of Pharmaceutics, 1996, 132, 9-21.	5.2	24
105	Generation of contrast-carrying liposomes of defined size with a new continuous high pressure extrusion method. International Journal of Pharmaceutics, 1995, 117, 1-12.	5.2	53
106	Detection of Lipopolysaccharides in Phospholipids and Liposomes Using the Limulus Test. Journal of Liposome Research, 1995, 5, 109-116.	3.3	11
107	Entrapment of haemoglobin into liposomes by the dehydration-rehydration method: vesicle characterization and in vivo behaviour. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1196, 65-75.	2.6	24
108	Acute toxicity and depression of phagocytosis in vivo by liposomes: Influence of lysophosphatidylcholine. Life Sciences, 1994, 56, 99-106.	4.3	8

#	Article	IF	CITATIONS
109	Preparation of liposomes using a Mini-Lab 8.30 H high-pressure homogenizer. International Journal of Pharmaceutics, 1993, 91, 69-74.	5.2	30