Haoxing Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8885847/publications.pdf

Version: 2024-02-01

83 papers

17,785 citations

53 h-index 82 g-index

88 all docs 88 docs citations

88 times ranked 26564 citing authors

#	Article	IF	CITATIONS
1	Transient Receptor Potential channels (TRP) in GtoPdb v.2022.1. IUPHAR/BPS Guide To Pharmacology CITE, 2022, 2022, .	0.2	O
2	Parkinson's disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes. Cell, 2022, 185, 2292-2308.e20.	13.5	69
3	A protocol to measure lysosomal Zn2+ release through a genetically encoded Zn2+ indicator. STAR Protocols, 2022, 3, 101453.	0.5	1
4	Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress. Autophagy, 2021, 17, 872-887.	4.3	68
5	MCOLN1/TRPML1 finely controls oncogenic autophagy in cancer by mediating zinc influx. Autophagy, 2021, 17, 4401-4422.	4.3	29
6	A ÂconservedÂubiquitin- and ESCRT-dependent pathway internalizes human lysosomal membrane proteinsÂfor degradation. PLoS Biology, 2021, 19, e3001361.	2.6	22
7	TRP channels in health and disease at a glance. Journal of Cell Science, 2021, 134, .	1.2	18
8	Transient Receptor Potential channels (TRP) in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	1
9	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	2.7	187
10	Lysosomal Zn2+ release triggers rapid, mitochondria-mediated, non-apoptotic cell death in metastatic melanoma. Cell Reports, 2021, 37, 109848.	2.9	34
11	Abnormal Somatosensory Behaviors Associated With a Gain-of-Function Mutation in TRPV3 Channels. Frontiers in Molecular Neuroscience, 2021, 14, 790435.	1.4	8
12	Stac protein regulates release of neuropeptides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29914-29924.	3.3	9
13	Small-molecule activation of lysosomal TRP channels ameliorates Duchenne muscular dystrophy in mouse models. Science Advances, 2020, 6, eaaz2736.	4.7	31
14	LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nature Cell Biology, 2020, 22, 1252-1263.	4.6	117
15	LRRC8 family proteins within lysosomes regulate cellular osmoregulation and enhance cell survival to multiple physiological stresses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29155-29165.	3.3	36
16	Sub-nanomolar sensitive GZnP3 reveals TRPML1-mediated neuronal Zn2+ signals. Nature Communications, 2019, 10, 4806.	5.8	27
17	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	2.7	242
18	Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR. PLoS Biology, 2019, 17, e3000252.	2.6	70

#	Article	IF	CITATIONS
19	Lysosomal Ion Channels as Decoders of Cellular Signals. Trends in Biochemical Sciences, 2019, 44, 110-124.	3.7	105
20	Release and uptake mechanisms of vesicular Ca2+ stores. Protein and Cell, 2019, 10, 8-19.	4.8	76
21	Transient Receptor Potential channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	7
22	Cell-autonomous regulation of epithelial cell quiescence by calcium channel Trpv6. ELife, 2019, 8, .	2.8	20
23	Agonist-specific voltage-dependent gating of lysosomal two-pore Na+ channels. ELife, 2019, 8, .	2.8	32
24	Organellar TRP channels. Nature Structural and Molecular Biology, 2018, 25, 1009-1018.	3.6	41
25	Gastric Acid Secretion from Parietal Cells Is Mediated by a Ca2+ Efflux Channel in the Tubulovesicle. Developmental Cell, 2017, 41, 262-273.e6.	3.1	42
26	A voltage-dependent K+ channel in the lysosome is required for refilling lysosomal Ca2+ stores. Journal of Cell Biology, 2017, 216, 1715-1730.	2.3	69
27	Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature, 2017, 550, 415-418.	13.7	244
28	Visualization of Phosphatidylinositol 3,5-Bisphosphate Dynamics by a Tandem ML1N-Based Fluorescent Protein Probe in Arabidopsis. Plant and Cell Physiology, 2017, 58, 1185-1195.	1.5	27
29	Gastrin Induces Nuclear Export and Proteasome Degradation of Menin in Enteric Glial Cells. Gastroenterology, 2017, 153, 1555-1567.e15.	0.6	28
30	A painful TR(i)P to lysosomes. Journal of Cell Biology, 2016, 215, 309-312.	2.3	2
31	Lysosome calcium in ROS regulation of autophagy. Autophagy, 2016, 12, 1954-1955.	4.3	90
32	PIKfyve Regulates Vacuole Maturation and Nutrient Recovery following Engulfment. Developmental Cell, 2016, 38, 536-547.	3.1	118
33	MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nature Communications, 2016, 7, 12109.	5 . 8	369
34	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
35	A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nature Cell Biology, 2016, 18, 404-417.	4.6	302
36	The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes. ELife, 2016, 5, .	2.8	160

#	Article	IF	Citations
37	A TRP Channel Senses Lysosome Neutralization by Pathogens to Trigger Their Expulsion. Cell, 2015, 161, 1306-1319.	13.5	227
38	Calcium signaling in membrane repair. Seminars in Cell and Developmental Biology, 2015, 45, 24-31.	2.3	69
39	Lysosomal Physiology. Annual Review of Physiology, 2015, 77, 57-80.	5.6	768
40	Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nature Cell Biology, 2015, 17, 288-299.	4.6	1,006
41	Organellar channels and transporters. Cell Calcium, 2015, 58, 1-10.	1.1	83
42	Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1373-81.	3.3	170
43	The intracellular Ca2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nature Medicine, 2014, 20, 1187-1192.	15.2	101
44	Lysosomal exocytosis and lipid storage disorders. Journal of Lipid Research, 2014, 55, 995-1009.	2.0	141
45	Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stemÂcells. Nature Materials, 2014, 13, 599-604.	13.3	238
46	Activation of TRPML1 Clears Intraneuronal A \hat{l}^2 in Preclinical Models of HIV Infection. Journal of Neuroscience, 2014, 34, 11485-11503.	1.7	91
47	TRPML1: An Ion Channel in the Lysosome. Handbook of Experimental Pharmacology, 2014, 222, 631-645.	0.9	72
48	Regulation of membrane trafficking by signalling on endosomal and lysosomal membranes. Journal of Physiology, 2013, 591, 4389-4401.	1.3	57
49	A TRP Channel in the Lysosome Regulates Large Particle Phagocytosis via Focal Exocytosis. Developmental Cell, 2013, 26, 511-524.	3.1	244
50	Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21165-21170.	3.3	119
51	Ryanodine receptor antagonists adapt NPC1 proteostasis to ameliorate lipid storage in Niemann–Pick type C disease fibroblasts. Human Molecular Genetics, 2012, 21, 3205-3214.	1.4	31
52	TPC Proteins Are Phosphoinositide- Activated Sodium-Selective Ion Channels in Endosomes and Lysosomes. Cell, 2012, 151, 372-383.	13.5	456
53	Phosphoinositide isoforms determine compartment-specific ion channel activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11384-11389.	3.3	131
54	The channel kinase, <i>TRPM7</i> , is required for early embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E225-33.	3.3	153

#	Article	IF	CITATIONS
55	Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nature Communications, 2012, 3, 731.	5.8	387
56	Pairing phosphoinositides with calcium ions in endolysosomal dynamics. BioEssays, 2011, 33, 448-457.	1.2	55
57	Mucolipins: Intracellular TRPML1â€3 channels. FEBS Letters, 2010, 584, 2013-2021.	1.3	212
58	TRP channels of intracellular membranes. Journal of Neurochemistry, 2010, 113, 313-328.	2.1	153
59	PI(3,5)P2 controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nature Communications, 2010, 1, 38.	5.8	498
60	Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Medicinal Chemistry, 2010, 2, 51-64.	1.1	257
61	TRP Channel Regulates EGFR Signaling in Hair Morphogenesis and Skin Barrier Formation. Cell, 2010, 141, 331-343.	13.5	287
62	Activating Mutations of the TRPML1 Channel Revealed by Proline-scanning Mutagenesis. Journal of Biological Chemistry, 2009, 284, 32040-32052.	1.6	102
63	The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature, 2008, 455, 992-996.	13.7	463
64	Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint–waddler mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18321-18326.	3.3	188
65	Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neuroscience, 2006, 9, 628-635.	7.1	552
66	Camphor Activates and Strongly Desensitizes the Transient Receptor Potential Vanilloid Subtype 1 Channel in a Vanilloid-Independent Mechanism. Journal of Neuroscience, 2005, 25, 8924-8937.	1.7	340
67	A Spontaneous, Recurrent Mutation in Divalent Metal Transporter-1 Exposes a Calcium Entry Pathway. PLoS Biology, 2004, 2, e50.	2.6	60
68	The voltage-gated Na+ channel NaVBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10566-10571.	3.3	105
69	A Superfamily of Voltage-gated Sodium Channels in Bacteria*. Journal of Biological Chemistry, 2004, 279, 9532-9538.	1.6	147
70	TRP ion channels in the nervous system. Current Opinion in Neurobiology, 2004, 14, 362-369.	2.0	301
71	Phosphatidylinositol 3-Kinase Activates ERK in Primary Sensory Neurons and Mediates Inflammatory Heat Hyperalgesia through TRPV1 Sensitization. Journal of Neuroscience, 2004, 24, 8300-8309.	1.7	368
72	Gating of Inward Rectifier K+ Channels by Proton-Mediated Interactions of Intracellular Protein Domains. Trends in Cardiovascular Medicine, 2002, 12, 5-13.	2.3	15

#	Article	IF	CITATIONS
73	Allosteric modulation of the mouse kir6.2 channel by intracellular H + and ATP. Journal of Physiology, 2002, 543, 495-504.	1.3	29
74	TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature, 2002, 418, 181-186.	13.7	795
75	A Prokaryotic Voltage-Gated Sodium Channel. Science, 2001, 294, 2372-2375.	6.0	461
76	An alternative approach to the identification of respiratory central chemoreceptors in the brainstem. Respiration Physiology, 2001, 129, 141-157.	2.8	30
77	Distinct Histidine Residues Control the Acid-induced Activation and Inhibition of the Cloned KATP Channel. Journal of Biological Chemistry, 2001, 276, 38690-38696.	1.6	39
78	Direct Activation of Cloned KATP Channels by Intracellular Acidosis. Journal of Biological Chemistry, 2001, 276, 12898-12902.	1.6	79
79	Requirement of Multiple Protein Domains and Residues for GatingKATP Channels by Intracellular pH. Journal of Biological Chemistry, 2001, 276, 36673-36680.	1.6	28
80	CO2 inhibits specific inward rectifier K+ channels by decreases in intra- and extracellular pH. Journal of Cellular Physiology, 2000, 183, 53-64.	2.0	39
81	Biophysical and Molecular Mechanisms Underlying the Modulation of Heteromeric Kir4.1–Kir5.1 Channels by Co2 and Ph. Journal of General Physiology, 2000, 116, 33-46.	0.9	98
82	Gating of Inward Rectifier K+ Channels by Proton-mediated Interactions of N- and C-terminal Domains. Journal of Biological Chemistry, 2000, 275, 31573-31580.	1.6	39
83	Identification of endogenous outward currents in the human embryonic kidney (HEK 293) cell line. Journal of Neuroscience Methods, 1998, 81, 73-83.	1.3	96