Yufen Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8885371/publications.pdf Version: 2024-02-01

ΥΠΕΕΝ ΖΗΛΟ

#	Article	IF	CITATIONS
1	Trimetaphosphate-induced chiral selection between amino acid and nucleoside using 15N-31P coupling NMR. Chinese Chemical Letters, 2022, 33, 821-824.	9.0	0
2	Radical-induced denitration of <i>N</i> -(<i>p</i> -nitrophenyl)propiolamides coupled with dearomatization: access to phosphonylated/trifluoromethylated azaspiro[4.5]-trienones. Chemical Communications, 2022, 58, 1306-1309.	4.1	11
3	The chameleon-like nature of elusive cobalt–oxygen intermediates in C–H bond activation reactions. Dalton Transactions, 2022, 51, 4317-4323.	3.3	6
4	Analysis of the medication rules of traditional Chinese medicines (TCMs) in treating liver cancer and potential TCMs exploration. Pharmacological Research Modern Chinese Medicine, 2022, 3, 100086.	1.2	5
5	Which is the real oxidant in the competitive ligand self-hydroxylation and substrate oxidation, a biomimetic iron(II)-hydroperoxo species or an oxo-iron(IV)-hydroxy one?. Dalton Transactions, 2022, , .	3.3	2
6	A mild and concise synthesis of aryloxy phosphoramidate prodrug of alcohols <i>via</i> transesterification reaction. RSC Advances, 2022, 12, 13111-13115.	3.6	2
7	Carboxyl-Based CPMP Tag for Ultrasensitive Analysis of Disaccharides by Negative Tandem Mass Spectrometry. Analytical Chemistry, 2022, 94, 9557-9563.	6.5	5
8	A mitochondria-targeted dual-functional aggregation-induced emission luminogen for intracellular mitochondrial imaging and photodynamic therapy. Biomaterials Science, 2021, 9, 1232-1236.	5.4	13
9	Oxyphosphoranes as precursors to bridging phosphate-catecholate ligands. Chemical Communications, 2021, 57, 1194-1197.	4.1	7
10	Theoretical studies unveil the unusual bonding in oxygenation reactions involving cobalt(<scp>ii</scp>)-iodylarene complexes. Chemical Communications, 2021, 57, 3115-3118.	4.1	4
11	Engineering of stepwise-targeting chitosan oligosaccharide conjugate for the treatment of acute kidney injury. Carbohydrate Polymers, 2021, 256, 117556.	10.2	31
12	Research Progresses of Targeted Therapy and Immunotherapy for Hepatocellular Carcinoma. Current Medicinal Chemistry, 2021, 28, 3107-3146.	2.4	9
13	Theoretical investigation on the elusive biomimetic iron(III)-iodosylarene chemistry: An unusual hydride transfer triggers the Ritter reaction. Chinese Chemical Letters, 2021, 32, 3857-3861.	9.0	7
14	An AlEgen-based photosensitizer for lysosome imaging and photodynamic therapy in tumor. Sensors and Actuators B: Chemical, 2021, 335, 129698.	7.8	16
15	Prebiotic Chemistry in Aqueous Environment: A Review of Peptide Synthesis and Its Relationship with Genetic Code. Chinese Journal of Chemistry, 2021, 39, 2264-2272.	4.9	4
16	LC-MS/MS-based non-isotopically paired labeling (NIPL) strategy for the qualification and quantification of monosaccharides. Talanta, 2021, 231, 122336.	5.5	11
17	Oneâ€pot synthesis and multiple MS/MS fragmentation studies of phospholysine peptides. Rapid Communications in Mass Spectrometry, 2021, 35, e9186.	1.5	2
18	Coupled electron and proton transfer in the piperidine drug metabolism pathway by the active species of cytochromes P450. Dalton Transactions, 2020, 49, 11099-11107.	3.3	4

YUFEN ZHAO

#	Article	IF	CITATIONS
19	Theoretical Study on the Structural-Function Relationship of Manganese(III)-Iodosylarene Adducts. Frontiers in Chemistry, 2020, 8, 744.	3.6	9
20	Widespread arginine phosphorylation in human cells—a novel protein PTM revealed by mass spectrometry. Science China Chemistry, 2020, 63, 341-346.	8.2	13
21	Copper-Catalyzed Phosphonylation/Trifluoromethylation of <i>N</i> - <i>p</i> -NO ₂ -Benzoylacrylamides Coupled with Dearomatization and Denitration. Organic Letters, 2019, 21, 7674-7678.	4.6	19
22	A plausible model correlates prebiotic peptide synthesis with the primordial genetic code. Chemical Communications, 2018, 54, 8598-8601.	4.1	18
23	Mixed Anhydrides of Nucleotides and Amino Acids Give Dipeptides: A Model System for Studying the Origin of the Genetic Code?. ChemistrySelect, 2018, 3, 7849-7855.	1.5	4
24	Copper-catalyzed cycloaddition between hydrogen phosphonates and activated alkenes: synthesis of phosphonoisoquinolinediones. RSC Advances, 2016, 6, 303-306.	3.6	34
25	Synthesis and Characterization of Alkoxy Spirophosphoranes Prepared from Hydrospirophosphoranes and Sodium Alcoholates. Heteroatom Chemistry, 2016, 27, 63-71.	0.7	8
26	N-phosphoryl amino acid models for P-N bonds in prebiotic chemical evolution. Science China Chemistry, 2015, 58, 374-382.	8.2	26
27	Synthesis of 6â€Phenanthridinephosphonates via a Radical Phosphonation and Cyclization Process Mediated by Manganese(III) Acetate. Asian Journal of Organic Chemistry, 2014, 3, 691-694.	2.7	33
28	Intermolecular Phosphoryl Transfer of <i>N</i> â€Phosphoryl Amino Acids. European Journal of Organic Chemistry, 2011, 2011, 3220-3228.	2.4	18
29	N-phosphorylation of amino acids by trimetaphosphate in aqueous solution—learning from prebiotic synthesis. Green Chemistry, 2009, 11, 569.	9.0	29