List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8885264/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 1998, 393, 648-659. | 27.8 | 2,788     |
| 2  | Antibody neutralization and escape by HIV-1. Nature, 2003, 422, 307-312.                                                                        | 27.8 | 2,233     |
| 3  | Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature, 2021, 593, 130-135.                                                     | 27.8 | 1,904     |
| 4  | Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1.<br>Science, 2010, 329, 856-861.               | 12.6 | 1,600     |
| 5  | Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature, 2020, 584,<br>450-456.                                    | 27.8 | 1,337     |
| 6  | The antigenic structure of the HIV gp120 envelope glycoprotein. Nature, 1998, 393, 705-711.                                                     | 27.8 | 1,152     |
| 7  | Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01. Science, 2010, 329, 811-817.                                   | 12.6 | 1,050     |
| 8  | Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature, 2013, 496, 469-476.                                            | 27.8 | 961       |
| 9  | Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 2020, 383, 1544-1555.             | 27.0 | 936       |
| 10 | HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature, 2002, 420, 678-682.             | 27.8 | 832       |
| 11 | A Conserved HIV gp120 Glycoprotein Structure Involved in Chemokine Receptor Binding. Science, 1998, 280, 1949-1953.                             | 12.6 | 819       |
| 12 | Structure-Based Design of a Fusion Glycoprotein Vaccine for Respiratory Syncytial Virus. Science, 2013, 342, 592-598.                           | 12.6 | 797       |
| 13 | Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature, 2011, 480, 336-343.                                       | 27.8 | 794       |
| 14 | Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing.<br>Science, 2011, 333, 1593-1602.                | 12.6 | 788       |
| 15 | Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature, 2012, 491, 406-412.                                         | 27.8 | 753       |
| 16 | HIV vaccine design and the neutralizing antibody problem. Nature Immunology, 2004, 5, 233-236.                                                  | 14.5 | 721       |
| 17 | Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature, 2007, 445, 732-737.                                         | 27.8 | 715       |
| 18 | Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.                                                  | 27.8 | 702       |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Structure of a V3-Containing HIV-1 gp120 Core. Science, 2005, 310, 1025-1028.                                                                                                                                        | 12.6 | 696       |
| 20 | Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature, 2014, 509, 55-62.                                                                                                                | 27.8 | 681       |
| 21 | Structure of RSV Fusion Glycoprotein Trimer Bound to a Prefusion-Specific Neutralizing Antibody.<br>Science, 2013, 340, 1113-1117.                                                                                   | 12.6 | 656       |
| 22 | Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature, 1990, 348, 419-426.                                                                                                                   | 27.8 | 599       |
| 23 | Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nature Medicine,<br>2015, 21, 1065-1070.                                                                                              | 30.7 | 567       |
| 24 | The Mannose-Dependent Epitope for Neutralizing Antibody 2G12 on Human Immunodeficiency Virus Type<br>1 Glycoprotein gp120. Journal of Virology, 2002, 76, 7293-7305.                                                 | 3.4  | 528       |
| 25 | Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host and Microbe, 2021, 29, 747-751.e4.                                                                                              | 11.0 | 504       |
| 26 | Somatic Mutations of the Immunoglobulin Framework Are Generally Required for Broad and Potent<br>HIV-1 Neutralization. Cell, 2013, 153, 126-138.                                                                     | 28.9 | 478       |
| 27 | Structure and Mechanistic Analysis of the Anti-Human Immunodeficiency Virus Type 1 Antibody 2F5 in<br>Complex with Its gp41 Epitope. Journal of Virology, 2004, 78, 10724-10737.                                     | 3.4  | 452       |
| 28 | Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host and Microbe, 2021, 29, 819-833.e7.                                                           | 11.0 | 444       |
| 29 | Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science, 2014, 346, 759-763.                                                                                              | 12.6 | 439       |
| 30 | Human Antibodies that Neutralize HIV-1: Identification, Structures, and B Cell Ontogenies. Immunity, 2012, 37, 412-425.                                                                                              | 14.3 | 417       |
| 31 | Broad and potent HIV-1 neutralization by a human antibody that binds the gp41–gp120 interface. Nature, 2014, 515, 138-142.                                                                                           | 27.8 | 400       |
| 32 | Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly<br>Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors. Journal of Virology, 2011,<br>85, 9998-10009. | 3.4  | 393       |
| 33 | Structures of the CCR5 N Terminus and of a Tyrosine-Sulfated Antibody with HIV-1 gp120 and CD4. Science, 2007, 317, 1930-1934.                                                                                       | 12.6 | 379       |
| 34 | Trimeric HIV-1-Env Structures Define Clycan Shields from Clades A, B, and G. Cell, 2016, 165, 813-826.                                                                                                               | 28.9 | 379       |
| 35 | Vaccine Induction of Antibodies against a Structurally Heterogeneous Site of Immune Pressure within<br>HIV-1 Envelope Protein Variable Regions 1 and 2. Immunity, 2013, 38, 176-186.                                 | 14.3 | 374       |
| 36 | Structures of HIV-1 gp120 Envelope Glycoproteins from Laboratory-Adapted and Primary Isolates.<br>Structure, 2000, 8, 1329-1339.                                                                                     | 3.3  | 358       |

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Access of Antibody Molecules to the Conserved Coreceptor Binding Site on Glycoprotein gp120 Is<br>Sterically Restricted on Primary Human Immunodeficiency Virus Type 1. Journal of Virology, 2003, 77,<br>10557-10565.                              | 3.4  | 343       |
| 38 | Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1<br>Env. Nature Structural and Molecular Biology, 2015, 22, 522-531.                                                                           | 8.2  | 333       |
| 39 | Multidonor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for<br>HIV-1 Neutralization by VRC01-Class Antibodies. Immunity, 2013, 39, 245-258.                                                                   | 14.3 | 332       |
| 40 | Structure of Respiratory Syncytial Virus Fusion Glycoprotein in the Postfusion Conformation Reveals<br>Preservation of Neutralizing Epitopes. Journal of Virology, 2011, 85, 7788-7796.                                                             | 3.4  | 327       |
| 41 | Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to<br>Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host and Microbe, 2020, 28,<br>867-879.e5.                                          | 11.0 | 316       |
| 42 | Prefusion F–specific antibodies determine the magnitude of RSV neutralizing activity in human sera.<br>Science Translational Medicine, 2015, 7, 309ra162.                                                                                           | 12.4 | 312       |
| 43 | Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science, 2016, 352, 828-833.                                                                                                                                           | 12.6 | 310       |
| 44 | Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 2015, 161, 1280-1292.                                                                                                                        | 28.9 | 305       |
| 45 | Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.                                                                                                                                      | 28.9 | 305       |
| 46 | Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1166-1171.            | 7.1  | 304       |
| 47 | Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth.<br>Immunity, 2016, 45, 1108-1121.                                                                                                                | 14.3 | 304       |
| 48 | Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nature<br>Reviews Immunology, 2013, 13, 693-701.                                                                                                     | 22.7 | 302       |
| 49 | Antigenic conservation and immunogenicity of the HIV coreceptor binding site. Journal of Experimental Medicine, 2005, 201, 1407-1419.                                                                                                               | 8.5  | 296       |
| 50 | Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1<br>coreceptor-binding site on gp120. Proceedings of the National Academy of Sciences of the United<br>States of America, 2004, 101, 2706-2711. | 7.1  | 278       |
| 51 | HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure. Immunity, 2018, 48, 855-871.                                                                                                                               | 14.3 | 277       |
| 52 | Structural Basis of Immune Evasion at the Site of CD4 Attachment on HIV-1 gp120. Science, 2009, 326, 1123-1127.                                                                                                                                     | 12.6 | 271       |
| 53 | Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nature Medicine, 2016, 22, 1456-1464.                                                                                    | 30.7 | 271       |
| 54 | Vaccine-Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses. Cell, 2016, 166, 609-623.                                                                                                                                       | 28.9 | 270       |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Cooperation of B Cell Lineages in Induction of HIV-1-Broadly Neutralizing Antibodies. Cell, 2014, 158, 481-491.                                                                                                                                | 28.9 | 266       |
| 56 | AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature, 2015, 519, 87-91.                                                                                                                                     | 27.8 | 265       |
| 57 | Highly Stable Trimers Formed by Human Immunodeficiency Virus Type 1 Envelope Glycoproteins Fused with the Trimeric Motif of T4 Bacteriophage Fibritin. Journal of Virology, 2002, 76, 4634-4642.                                               | 3.4  | 261       |
| 58 | Elicitation of structure-specific antibodies by epitope scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17880-17887.                                                                    | 7.1  | 261       |
| 59 | Dimeric association and segmental variability in the structure of human CD4. Nature, 1997, 387, 527-530.                                                                                                                                       | 27.8 | 259       |
| 60 | Evaluation of candidate vaccine approaches for MERS-CoV. Nature Communications, 2015, 6, 7712.                                                                                                                                                 | 12.8 | 258       |
| 61 | Structural basis for diverse N-glycan recognition by HIV-1–neutralizing V1–V2–directed antibody PG16.<br>Nature Structural and Molecular Biology, 2013, 20, 804-813.                                                                           | 8.2  | 257       |
| 62 | Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nature Medicine, 2018, 24, 857-867.                                                                                           | 30.7 | 256       |
| 63 | Oligomeric Modeling and Electrostatic Analysis of the gp120 Envelope Glycoprotein of Human<br>Immunodeficiency Virus. Journal of Virology, 2000, 74, 1961-1972.                                                                                | 3.4  | 248       |
| 64 | Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody <i>In Vitro</i> Improves Protection against<br>Lentiviral Infection <i>In Vivo</i> . Journal of Virology, 2014, 88, 12669-12682.                                                     | 3.4  | 248       |
| 65 | A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on<br>the parasite. Nature Medicine, 2018, 24, 408-416.                                                                                        | 30.7 | 235       |
| 66 | InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell,<br>2021, 184, 4203-4219.e32.                                                                                                               | 28.9 | 228       |
| 67 | Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection. Cell, 2015, 161, 470-485.                                                                                                                     | 28.9 | 226       |
| 68 | Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science, 2017, 358, 85-90.                                                                                                                         | 12.6 | 225       |
| 69 | Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5663-5668. | 7.1  | 222       |
| 70 | Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Science Translational Medicine, 2014, 6, 243ra88.                                                                                   | 12.4 | 222       |
| 71 | Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies. Nature Medicine, 2015, 21, 1332-1336.                                                                                                | 30.7 | 215       |
| 72 | Delineating Antibody Recognition in Polyclonal Sera from Patterns of HIV-1 Isolate Neutralization.<br>Science, 2013, 340, 751-756.                                                                                                             | 12.6 | 213       |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Computation-Guided Backbone Grafting of a Discontinuous Motif onto a Protein Scaffold. Science, 2011, 334, 373-376.                                                                                                                             | 12.6 | 212       |
| 74 | Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses.<br>Nature Immunology, 2019, 20, 362-372.                                                                                                  | 14.5 | 211       |
| 75 | Crystal Structure of PG16 and Chimeric Dissection with Somatically Related PG9: Structure-Function<br>Analysis of Two Quaternary-Specific Antibodies That Effectively Neutralize HIV-1. Journal of Virology,<br>2010, 84, 8098-8110.            | 3.4  | 209       |
| 76 | A proof of concept for structure-based vaccine design targeting RSV in humans. Science, 2019, 365, 505-509.                                                                                                                                     | 12.6 | 207       |
| 77 | New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency. Journal of Virology, 2016, 90, 76-91.                                                                                                | 3.4  | 205       |
| 78 | Induction of HIV Neutralizing Antibody Lineages in Mice with Diverse Precursor Repertoires. Cell, 2016, 166, 1471-1484.e18.                                                                                                                     | 28.9 | 198       |
| 79 | Topological Layers in the HIV-1 gp120 Inner Domain Regulate gp41 Interaction and CD4-Triggered Conformational Transitions. Molecular Cell, 2010, 37, 656-667.                                                                                   | 9.7  | 194       |
| 80 | Tyrosine Sulfation of Human Antibodies Contributes to Recognition of the CCR5 Binding Region of HIV-1 gp120. Cell, 2003, 114, 161-170.                                                                                                          | 28.9 | 186       |
| 81 | mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron. Cell, 2022, 185, 1556-1571.e18.                                                                   | 28.9 | 179       |
| 82 | Mutagenic Stabilization and/or Disruption of a CD4-Bound State Reveals Distinct Conformations of<br>the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein. Journal of Virology, 2002, 76,<br>9888-9899.                           | 3.4  | 177       |
| 83 | Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science, 2021, 373,                                                                                                                                        | 12.6 | 174       |
| 84 | Envelope residue 375 substitutions in simian–human immunodeficiency viruses enhance CD4 binding<br>and replication in rhesus macaques. Proceedings of the National Academy of Sciences of the United<br>States of America, 2016, 113, E3413-22. | 7.1  | 170       |
| 85 | Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design. Nature Structural and Molecular Biology, 2016, 23, 81-90.                                                                    | 8.2  | 162       |
| 86 | Small-Molecule CD4 Mimics Interact with a Highly Conserved Pocket on HIV-1 gp120. Structure, 2008, 16, 1689-1701.                                                                                                                               | 3.3  | 160       |
| 87 | Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation. Cell Reports, 2017, 19, 719-732.                                                                                                                               | 6.4  | 160       |
| 88 | Early Low-Titer Neutralizing Antibodies Impede HIV-1 Replication and Select for Virus Escape. PLoS<br>Pathogens, 2012, 8, e1002721.                                                                                                             | 4.7  | 159       |
| 89 | Two Distinct Broadly Neutralizing Antibody Specificities of Different Clonal Lineages in a Single<br>HIV-1-Infected Donor: Implications for Vaccine Design. Journal of Virology, 2012, 86, 4688-4692.<br>––––––––––––––––––––––––––––––––––––   | 3.4  | 159       |
| 90 | Structure-based, targeted deglycosylation of HIV-1 gp120 and effects on neutralization sensitivity and antibody recognition. Virology, 2003, 313, 387-400.                                                                                      | 2.4  | 158       |

6

| #   | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Structural basis of respiratory syncytial virus neutralization by motavizumab. Nature Structural and<br>Molecular Biology, 2010, 17, 248-250.                                                                                                   | 8.2  | 156       |
| 92  | Associating HIV-1 envelope glycoprotein structures with states on theÂvirus observed by smFRET.<br>Nature, 2019, 568, 415-419.                                                                                                                  | 27.8 | 156       |
| 93  | Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle<br>East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape. Journal of<br>Virology, 2018, 92, .               | 3.4  | 155       |
| 94  | Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, 2021, 595, 278-282.                                                                                                                                             | 27.8 | 154       |
| 95  | Real-Time Conformational Dynamics of SARS-CoV-2 Spikes on Virus Particles. Cell Host and Microbe, 2020, 28, 880-891.e8.                                                                                                                         | 11.0 | 153       |
| 96  | Mining the antibodyome for HIV-1–neutralizing antibodies with next-generation sequencing and phylogenetic pairing of heavy/light chains. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6470-6475. | 7.1  | 142       |
| 97  | Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving<br>Glycan-Deficient Patches Proximal to the CD4 Binding Site. PLoS Pathogens, 2015, 11, e1004932.                                                   | 4.7  | 141       |
| 98  | Immunoglobulin Gene Insertions and Deletions in the Affinity Maturation of HIV-1 Broadly Reactive Neutralizing Antibodies. Cell Host and Microbe, 2014, 16, 304-313.                                                                            | 11.0 | 137       |
| 99  | Rational Design of Vaccines to Elicit Broadly Neutralizing Antibodies to HIV-1. Cold Spring Harbor<br>Perspectives in Medicine, 2011, 1, a007278-a007278.                                                                                       | 6.2  | 135       |
| 100 | HIV-1 and influenza antibodies: seeing antigens in new ways. Nature Immunology, 2009, 10, 573-578.                                                                                                                                              | 14.5 | 128       |
| 101 | HIV-1 Env trimer opens through an asymmetric intermediate in which individual protomers adopt distinct conformations. ELife, 2018, 7, .                                                                                                         | 6.0  | 127       |
| 102 | Single-Chain Soluble BG505.SOSIP gp140 Trimers as Structural and Antigenic Mimics of Mature Closed<br>HIV-1 Env. Journal of Virology, 2015, 89, 5318-5329.                                                                                      | 3.4  | 125       |
| 103 | Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529.<br>Science, 2022, 376, eabn8897.                                                                                                                | 12.6 | 119       |
| 104 | Structure-Based Stabilization of HIV-1 gp120 Enhances Humoral Immune Responses to the Induced Co-Receptor Binding Site. PLoS Pathogens, 2009, 5, e1000445.                                                                                      | 4.7  | 113       |
| 105 | Crystal Structures of GII.10 and GII.12 Norovirus Protruding Domains in Complex with Histo-Blood<br>Group Antigens Reveal Details for a Potential Site of Vulnerability. Journal of Virology, 2011, 85,<br>6687-6701.                           | 3.4  | 113       |
| 106 | Iterative structure-based improvement of a fusion-glycoprotein vaccine against RSV. Nature<br>Structural and Molecular Biology, 2016, 23, 811-820.                                                                                              | 8.2  | 110       |
| 107 | Crystal structures of trimeric HIV envelope with entry inhibitors BMS-378806 and BMS-626529. Nature Chemical Biology, 2017, 13, 1115-1122.                                                                                                      | 8.0  | 110       |
| 108 | Glycan Masking Focuses Immune Responses to the HIV-1 CD4-Binding Site and Enhances Elicitation of VRC01-Class Precursor Antibodies. Immunity, 2018, 49, 301-311.e5.                                                                             | 14.3 | 110       |

| #   | Article                                                                                                                                                                                                                              | lF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | PGV04, an HIV-1 gp120 CD4 Binding Site Antibody, Is Broad and Potent in Neutralization but Does Not<br>Induce Conformational Changes Characteristic of CD4. Journal of Virology, 2012, 86, 4394-4403.                                | 3.4  | 109       |
| 110 | Scorpion-Toxin Mimics of CD4 in Complex with Human Immunodeficiency Virus gp120. Structure, 2005, 13, 755-768.                                                                                                                       | 3.3  | 107       |
| 111 | Probability Analysis of Variational Crystallization and Its Application to gp120, The Exterior Envelope<br>Glycoprotein of Type 1 Human Immunodeficiency Virus (HIV-1). Journal of Biological Chemistry, 1999,<br>274, 4115-4123.    | 3.4  | 106       |
| 112 | Relationship between Antibody 2F5 Neutralization of HIV-1 and Hydrophobicity of Its Heavy Chain Third<br>Complementarity-Determining Region. Journal of Virology, 2010, 84, 2955-2962.                                               | 3.4  | 106       |
| 113 | Synthetic glycopeptides reveal the glycan specificity of HIV-neutralizing antibodies. Nature Chemical<br>Biology, 2013, 9, 521-526.                                                                                                  | 8.0  | 106       |
| 114 | Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization.<br>Cell, 2019, 178, 567-584.e19.                                                                                                   | 28.9 | 106       |
| 115 | Structure of a Major Antigenic Site on the Respiratory Syncytial Virus Fusion Glycoprotein in Complex with Neutralizing Antibody 101F. Journal of Virology, 2010, 84, 12236-12244.                                                   | 3.4  | 105       |
| 116 | De novo identification of VRC01 class HIV-1–neutralizing antibodies by next-generation sequencing of<br>B-cell transcripts. Proceedings of the National Academy of Sciences of the United States of America,<br>2013, 110, E4088-97. | 7.1  | 105       |
| 117 | Characterization of Human Immunodeficiency Virus Type 1 Monomeric and Trimeric gp120<br>Glycoproteins Stabilized in the CD4-Bound State: Antigenicity, Biophysics, and Immunogenicity. Journal<br>of Virology, 2007, 81, 5579-5593.  | 3.4  | 101       |
| 118 | Design and Characterization of Epitope-Scaffold Immunogens That Present the Motavizumab Epitope<br>from Respiratory Syncytial Virus. Journal of Molecular Biology, 2011, 409, 853-866.                                               | 4.2  | 100       |
| 119 | Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody Gene Transfer Protects<br>Nonhuman Primates from Mucosal Simian-Human Immunodeficiency Virus Infection. Journal of<br>Virology, 2015, 89, 8334-8345.               | 3.4  | 100       |
| 120 | Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies.<br>Nature Chemistry, 2016, 8, 338-346.                                                                                           | 13.6 | 97        |
| 121 | Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models. Cell Reports, 2017, 21, 3681-3690.                                                                                                          | 6.4  | 97        |
| 122 | Quaternary contact in the initial interaction of CD4 with the HIV-1 envelope trimer. Nature Structural and Molecular Biology, 2017, 24, 370-378.                                                                                     | 8.2  | 94        |
| 123 | A Universal Approach to Optimize the Folding and Stability of Prefusion-Closed HIV-1 Envelope Trimers.<br>Cell Reports, 2018, 23, 584-595.                                                                                           | 6.4  | 93        |
| 124 | A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice.<br>Science Translational Medicine, 2022, 14, eabj7125.                                                                            | 12.4 | 93        |
| 125 | Sustained Delivery of a Broadly Neutralizing Antibody in Nonhuman Primates Confers Long-Term<br>Protection against Simian/Human Immunodeficiency Virus Infection. Journal of Virology, 2015, 89,<br>5895-5903.                       | 3.4  | 92        |
| 126 | Completeness of HIV-1 Envelope Clycan Shield at Transmission Determines Neutralization Breadth. Cell Reports, 2018, 25, 893-908.e7.                                                                                                  | 6.4  | 91        |

| #   | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Structure-Based Design, Synthesis, and Characterization of Dual Hotspot Small-Molecule HIV-1 Entry<br>Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 4382-4396.                                                                  | 6.4  | 90        |
| 128 | A platform incorporating trimeric antigens into self-assembling nanoparticles reveals<br>SARS-CoV-2-spike nanoparticles to elicit substantially higher neutralizing responses than spike alone.<br>Scientific Reports, 2020, 10, 18149. | 3.3  | 90        |
| 129 | Structure-Based Design, Synthesis and Validation of CD4-Mimetic Small Molecule Inhibitors of HIV-1<br>Entry: Conversion of a Viral Entry Agonist to an Antagonist. Accounts of Chemical Research, 2014, 47,<br>1228-1237.               | 15.6 | 88        |
| 130 | Activation and lysis of human CD4 cells latently infected with HIV-1. Nature Communications, 2015, 6, 8447.                                                                                                                             | 12.8 | 88        |
| 131 | The β20–β21 of gp120 is a regulatory switch for HIV-1 Env conformational transitions. Nature<br>Communications, 2017, 8, 1049.                                                                                                          | 12.8 | 88        |
| 132 | Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection against a clade<br>C SHIV challenge. Science Translational Medicine, 2017, 9, .                                                                  | 12.4 | 87        |
| 133 | Mechanism of Human Immunodeficiency Virus Type 1 Resistance to Monoclonal Antibody b12 That<br>Effectively Targets the Site of CD4 Attachment. Journal of Virology, 2009, 83, 10892-10907.                                              | 3.4  | 86        |
| 134 | Antibody mechanics on a membrane-bound HIV segment essential for GP41-targeted viral neutralization. Nature Structural and Molecular Biology, 2011, 18, 1235-1243.                                                                      | 8.2  | 86        |
| 135 | Antibodies VRC01 and 10E8 Neutralize HIV-1 with High Breadth and Potency Even with Ig-Framework<br>Regions Substantially Reverted to Germline. Journal of Immunology, 2014, 192, 1100-1106.                                             | 0.8  | 86        |
| 136 | Computational prediction of N-linked glycosylation incorporating structural properties and patterns. Bioinformatics, 2012, 28, 2249-2255.                                                                                               | 4.1  | 85        |
| 137 | Preferential induction of cross-group influenza A hemagglutinin stem–specific memory B cells after<br>H7N9 immunization in humans. Science Immunology, 2017, 2, .                                                                       | 11.9 | 84        |
| 138 | Free Energy Perturbation Calculation of Relative Binding Free Energy between Broadly Neutralizing<br>Antibodies and the gp120 Glycoprotein of HIV-1. Journal of Molecular Biology, 2017, 429, 930-947.                                  | 4.2  | 82        |
| 139 | Gene-Specific Substitution Profiles Describe the Types and Frequencies of Amino Acid Changes during Antibody Somatic Hypermutation. Frontiers in Immunology, 2017, 8, 537.                                                              | 4.8  | 82        |
| 140 | Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity. Journal of Virology, 2017, 91, .                                                                           | 3.4  | 81        |
| 141 | Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding<br>Loop. Immunity, 2017, 46, 777-791.e10.                                                                                          | 14.3 | 81        |
| 142 | Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Science<br>Translational Medicine, 2017, 9, .                                                                                                    | 12.4 | 81        |
| 143 | Cross-Reactive HIV-1-Neutralizing Human Monoclonal Antibodies Identified from a Patient with 2F5-Like Antibodies. Journal of Virology, 2011, 85, 11401-11408.                                                                           | 3.4  | 80        |
| 144 | Longitudinal Analysis Reveals Early Development of Three MPER-Directed Neutralizing Antibody Lineages from an HIV-1-Infected Individual. Immunity, 2019, 50, 677-691.e13.                                                               | 14.3 | 77        |

| #   | Article                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Epitope mapping and characterization of a novel CD4-induced human monoclonal antibody capable of neutralizing primary HIV-1 strains. Virology, 2003, 315, 124-134.                                                                                                    | 2.4  | 76        |
| 146 | A Short Segment of the HIV-1 gp120 V1/V2 Region Is a Major Determinant of Resistance to V1/V2<br>Neutralizing Antibodies. Journal of Virology, 2012, 86, 8319-8323.                                                                                                   | 3.4  | 76        |
| 147 | Enhancing Protein Crystallization through Precipitant Synergy. Structure, 2003, 11, 1061-1070.                                                                                                                                                                        | 3.3  | 75        |
| 148 | Structural Basis for Broad Detection of Genogroup II Noroviruses by a Monoclonal Antibody That<br>Binds to a Site Occluded in the Viral Particle. Journal of Virology, 2012, 86, 3635-3646.                                                                           | 3.4  | 75        |
| 149 | Induction of Antibodies in Rhesus Macaques That Recognize a Fusion-Intermediate Conformation of HIV-1 gp41. PLoS ONE, 2011, 6, e27824.                                                                                                                                | 2.5  | 75        |
| 150 | Sera Antibody Repertoire Analyses Reveal Mechanisms of Broad and Pandemic Strain Neutralizing<br>Responses after Human Norovirus Vaccination. Immunity, 2019, 50, 1530-1541.e8.                                                                                       | 14.3 | 71        |
| 151 | Somatic populations of PGT135–137 HIV-1-neutralizing antibodies identified by 454 pyrosequencing and bioinformatic. Frontiers in Microbiology, 2012, 3, 315.                                                                                                          | 3.5  | 70        |
| 152 | Structure-based design of a quadrivalent fusion glycoprotein vaccine for human parainfluenza virus<br>types 1–4. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>12265-12270.                                          | 7.1  | 70        |
| 153 | Stapled HIV-1 peptides recapitulate antigenic structures and engage broadly neutralizing antibodies.<br>Nature Structural and Molecular Biology, 2014, 21, 1058-1067.                                                                                                 | 8.2  | 69        |
| 154 | Soluble Prefusion Closed DS-SOSIP.664-Env Trimers of Diverse HIV-1 Strains. Cell Reports, 2017, 21, 2992-3002.                                                                                                                                                        | 6.4  | 69        |
| 155 | Structural Survey of Broadly Neutralizing Antibodies Targeting the HIV-1 Env Trimer Delineates<br>Epitope Categories and Characteristics of Recognition. Structure, 2019, 27, 196-206.e6.                                                                             | 3.3  | 69        |
| 156 | Soluble Mimetics of Human Immunodeficiency Virus Type 1 Viral Spikes Produced by Replacement of the<br>Native Trimerization Domain with aHeterologous Trimerization Motif: Characterization and Ligand<br>Binding Analysis. Journal of Virology, 2005, 79, 9954-9969. | 3.4  | 67        |
| 157 | Human Immunodeficiency Virus Type 2 (HIV-2)/HIV-1 Envelope Chimeras Detect High Titers of Broadly<br>Reactive HIV-1 V3-Specific Antibodies in Human Plasma. Journal of Virology, 2009, 83, 1240-1259.                                                                 | 3.4  | 67        |
| 158 | Expression-System-Dependent Modulation of HIV-1 Envelope Glycoprotein Antigenicity and<br>Immunogenicity. Journal of Molecular Biology, 2010, 403, 131-147.                                                                                                           | 4.2  | 67        |
| 159 | SONAR: A High-Throughput Pipeline for Inferring Antibody Ontogenies from Longitudinal Sequencing of B Cell Transcripts. Frontiers in Immunology, 2016, 7, 372.                                                                                                        | 4.8  | 67        |
| 160 | cAb-Rep: A Database of Curated Antibody Repertoires for Exploring Antibody Diversity and Predicting<br>Antibody Prevalence. Frontiers in Immunology, 2019, 10, 2365.                                                                                                  | 4.8  | 67        |
| 161 | Safety and pharmacokinetics of broadly neutralising human monoclonal antibody VRC07-523LS in healthy adults: a phase 1 dose-escalation clinical trial. Lancet HIV,the, 2019, 6, e667-e679.                                                                            | 4.7  | 67        |
| 162 | How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design.<br>Current Opinion in HIV and AIDS, 2017, 12, 229-240.                                                                                                            | 3.8  | 66        |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | A Neutralizing Antibody Recognizing Primarily N-Linked Glycan Targets the Silent Face of the HIV<br>Envelope. Immunity, 2018, 48, 500-513.e6.                                                                                | 14.3 | 66        |
| 164 | Two-Component Ferritin Nanoparticles for Multimerization of Diverse Trimeric Antigens. ACS Infectious Diseases, 2018, 4, 788-796.                                                                                            | 3.8  | 65        |
| 165 | A V3 Loop-Dependent gp120 Element Disrupted by CD4 Binding Stabilizes the Human Immunodeficiency<br>Virus Envelope Glycoprotein Trimer. Journal of Virology, 2010, 84, 3147-3161.                                            | 3.4  | 64        |
| 166 | Residue-Level Prediction of HIV-1 Antibody Epitopes Based on Neutralization of Diverse Viral Strains.<br>Journal of Virology, 2013, 87, 10047-10058.                                                                         | 3.4  | 64        |
| 167 | Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design. Journal of Virology, 2016, 90, 5899-5914.                                                           | 3.4  | 62        |
| 168 | Inference of the HIV-1 VRC01 Antibody Lineage Unmutated Common Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier. Immunity, 2018, 49, 1162-1174.e8.                                                     | 14.3 | 61        |
| 169 | HIV-1 Envelope and MPER Antibody Structures in Lipid Assemblies. Cell Reports, 2020, 31, 107583.                                                                                                                             | 6.4  | 60        |
| 170 | Role of humoral immunity against hepatitis B virus core antigen in the pathogenesis of acute liver<br>failure. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>E11369-E11378. | 7.1  | 59        |
| 171 | Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes. Cell Reports, 2020, 33, 108322.                                         | 6.4  | 59        |
| 172 | Enhanced Neutralizing Antibody Response Induced by Respiratory Syncytial Virus Prefusion F Protein<br>Expressed by a Vaccine Candidate. Journal of Virology, 2015, 89, 9499-9510.                                            | 3.4  | 58        |
| 173 | Immunogenicity of a Prefusion HIV-1 Envelope Trimer in Complex with a Quaternary-Structure-Specific Antibody. Journal of Virology, 2016, 90, 2740-2755.                                                                      | 3.4  | 58        |
| 174 | Synthesis, Antiviral Potency, in Vitro ADMET, and X-ray Structure of Potent CD4 Mimics as Entry<br>Inhibitors That Target the Phe43 Cavity of HIV-1 gp120. Journal of Medicinal Chemistry, 2017, 60,<br>3124-3153.           | 6.4  | 58        |
| 175 | Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell, 2021, 184, 2955-2972.e25.                                                                                                    | 28.9 | 57        |
| 176 | Analysis of the Interaction of Antibodies with a Conserved, Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Research and Human Retroviruses, 1998, 14, 191-198.                          | 1.1  | 56        |
| 177 | Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLoS Pathogens, 2019, 15, e1008026.                      | 4.7  | 56        |
| 178 | Protective antibodies elicited by SARS-CoV-2 spike protein vaccination are boosted in the lung after challenge in nonhuman primates. Science Translational Medicine, 2021, 13, .                                             | 12.4 | 56        |
| 179 | Broad and Potent Neutralizing Antibody Responses Elicited in Natural HIV-2 Infection. Journal of Virology, 2012, 86, 947-960.                                                                                                | 3.4  | 55        |
| 180 | Subnanometer structures of HIV-1 envelope trimers on aldrithiol-2-inactivated virus particles. Nature Structural and Molecular Biology, 2020, 27, 726-734.                                                                   | 8.2  | 55        |

| #   | Article                                                                                                                                                                                                                                 | lF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2-derived antibody class. Cell<br>Reports, 2021, 35, 108950.                                                                                                      | 6.4  | 54        |
| 182 | Structure of Super-Potent Antibody CAP256-VRC26.25 in Complex with HIV-1 Envelope Reveals a Combined Mode of Trimer-Apex Recognition. Cell Reports, 2020, 31, 107488.                                                                   | 6.4  | 53        |
| 183 | Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near<br>Pan-reactive HIV-1-Neutralizing Antibody. Cell Reports, 2018, 22, 1798-1809.                                                           | 6.4  | 52        |
| 184 | Structural basis for accommodation of emerging B.1.351 and B.1.1.7 variants by two potent SARS-CoV-2 neutralizing antibodies. Structure, 2021, 29, 655-663.e4.                                                                          | 3.3  | 52        |
| 185 | Neutralizing antibody 5-7 defines a distinct site of vulnerability in SARS-CoV-2 spike N-terminal domain.<br>Cell Reports, 2021, 37, 109928.                                                                                            | 6.4  | 52        |
| 186 | Cocrystal Structures of Antibody N60-i3 and Antibody JR4 in Complex with gp120 Define More Cluster A<br>Epitopes Involved in Effective Antibody-Dependent Effector Function against HIV-1. Journal of Virology,<br>2015, 89, 8840-8854. | 3.4  | 51        |
| 187 | Targeted Isolation of Antibodies Directed against Major Sites of SIV Env Vulnerability. PLoS Pathogens, 2016, 12, e1005537.                                                                                                             | 4.7  | 51        |
| 188 | Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting. PLoS<br>Pathogens, 2017, 13, e1006148.                                                                                                   | 4.7  | 51        |
| 189 | Transplanting Supersites of HIV-1 Vulnerability. PLoS ONE, 2014, 9, e99881.                                                                                                                                                             | 2.5  | 51        |
| 190 | Progress in the rational design of an AIDS vaccine. Philosophical Transactions of the Royal Society B:<br>Biological Sciences, 2011, 366, 2759-2765.                                                                                    | 4.0  | 50        |
| 191 | Lattice engineering enables definition of molecular features allowing for potent small-molecule inhibition of HIV-1 entry. Nature Communications, 2019, 10, 47.                                                                         | 12.8 | 50        |
| 192 | Crystal Structures of HIV-1 gp120 Envelope Glycoprotein in Complex with NBD Analogues That Target the CD4-Binding Site. PLoS ONE, 2014, 9, e85940.                                                                                      | 2.5  | 49        |
| 193 | Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth.<br>Science, 2021, 371, .                                                                                                                | 12.6 | 49        |
| 194 | SARS-CoV-2 Variants Increase Kinetic Stability of Open Spike Conformations as an Evolutionary Strategy. MBio, 2022, 13, e0322721.                                                                                                       | 4.1  | 48        |
| 195 | The changing face of HIV vaccine research. Journal of the International AIDS Society, 2012, 15, 17407.                                                                                                                                  | 3.0  | 47        |
| 196 | Crystal Structure of Human Antibody 2909 Reveals Conserved Features of Quaternary<br>Structure-Specific Antibodies That Potently Neutralize HIV-1. Journal of Virology, 2011, 85, 2524-2535.                                            | 3.4  | 46        |
| 197 | Complete functional mapping of infection- and vaccine-elicited antibodies against the fusion peptide of HIV. PLoS Pathogens, 2018, 14, e1007159.                                                                                        | 4.7  | 46        |
| 198 | Developmental Pathway of the MPER-Directed HIV-1-Neutralizing Antibody 10E8. PLoS ONE, 2016, 11, e0157409.                                                                                                                              | 2.5  | 44        |

| #   | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Enhanced Exposure of the CD4-Binding Site to Neutralizing Antibodies by Structural Design of a<br>Membrane-Anchored Human Immunodeficiency Virus Type 1 gp120 Domain. Journal of Virology, 2009, 83,<br>5077-5086.                                  | 3.4  | 43        |
| 200 | Immunotypes of a Quaternary Site of HIV-1 Vulnerability and Their Recognition by Antibodies. Journal of Virology, 2011, 85, 4578-4585.                                                                                                              | 3.4  | 43        |
| 201 | Hyperglycosylated Stable Core Immunogens Designed To Present the CD4 Binding Site Are<br>Preferentially Recognized by Broadly Neutralizing Antibodies. Journal of Virology, 2014, 88,<br>14002-14016.                                               | 3.4  | 43        |
| 202 | Interdomain Stabilization Impairs CD4 Binding and Improves Immunogenicity of the HIV-1 Envelope<br>Trimer. Cell Host and Microbe, 2018, 23, 832-844.e6.                                                                                             | 11.0 | 43        |
| 203 | Crystal structure of a fully glycosylated HIV-1 gp120 core reveals a stabilizing role for the glycan at Asn262. Proteins: Structure, Function and Bioinformatics, 2015, 83, 590-596.                                                                | 2.6  | 42        |
| 204 | Microsecond Dynamics and Network Analysis of the HIV-1 SOSIP Env Trimer Reveal Collective Behavior and Conserved Microdomains of the Clycan Shield. Structure, 2017, 25, 1631-1639.e2.                                                              | 3.3  | 42        |
| 205 | Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class<br>HIV-1 broadly neutralizing antibodies. Proceedings of the National Academy of Sciences of the United<br>States of America, 2017, 114, 8614-8619. | 7.1  | 42        |
| 206 | Adjuvants and the vaccine response to the DS-Cav1-stabilized fusion glycoprotein of respiratory syncytial virus. PLoS ONE, 2017, 12, e0186854.                                                                                                      | 2.5  | 42        |
| 207 | Structural Basis for HIV-1 Neutralization by 2F5-Like Antibodies m66 and m66.6. Journal of Virology, 2014, 88, 2426-2441.                                                                                                                           | 3.4  | 41        |
| 208 | Consistent elicitation of cross-clade HIV-neutralizing responses achieved in guinea pigs after fusion peptide priming by repetitive envelope trimer boosting. PLoS ONE, 2019, 14, e0215163.                                                         | 2.5  | 41        |
| 209 | Prolonged evolution of the memory B cell response induced by a replicating adenovirus-influenza H5 vaccine. Science Immunology, 2019, 4, .                                                                                                          | 11.9 | 40        |
| 210 | Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations. Nature Immunology, 2021, 22, 1503-1514.                                                                                              | 14.5 | 40        |
| 211 | N332-Directed Broadly Neutralizing Antibodies Use Diverse Modes of HIV-1 Recognition: Inferences from Heavy-Light Chain Complementation of Function. PLoS ONE, 2013, 8, e55701.                                                                     | 2.5  | 38        |
| 212 | A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus. PLoS<br>ONE, 2015, 10, e0128779.                                                                                                                  | 2.5  | 38        |
| 213 | Protection of calves by a prefusion-stabilized bovine RSV F vaccine. Npj Vaccines, 2017, 2, 7.                                                                                                                                                      | 6.0  | 38        |
| 214 | Paired heavy- and light-chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses. Cell Reports, 2021, 37, 109771.                                                                                               | 6.4  | 38        |
| 215 | Vaccination with prefusion-stabilized respiratory syncytial virus fusion protein induces genetically and antigenically diverse antibody responses. Immunity, 2021, 54, 769-780.e6.                                                                  | 14.3 | 37        |
| 216 | Preclinical Development of a Fusion Peptide Conjugate as an HIV Vaccine Immunogen. Scientific Reports, 2020, 10, 3032.                                                                                                                              | 3.3  | 36        |

| #   | Article                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Vaccination induces maturation in a mouse model of diverse unmutated VRC01-class precursors to HIV-neutralizing antibodies with >50% breadth. Immunity, 2021, 54, 324-339.e8.         | 14.3 | 36        |
| 218 | Conformational characterization of aberrant disulfide-linked HIV-1 gp120 dimers secreted from overexpressing cells. Journal of Virological Methods, 2010, 168, 155-161.               | 2.1  | 35        |
| 219 | Effects of Darwinian Selection and Mutability on Rate of Broadly Neutralizing Antibody Evolution during HIV-1 Infection. PLoS Computational Biology, 2016, 12, e1004940.              | 3.2  | 35        |
| 220 | Somatic Hypermutation-Induced Changes in the Structure and Dynamics of HIV-1 Broadly Neutralizing Antibodies. Structure, 2016, 24, 1346-1357.                                         | 3.3  | 35        |
| 221 | Refolding the envelope. Nature, 2005, 433, 815-816.                                                                                                                                   | 27.8 | 34        |
| 222 | Outer Domain of HIV-1 gp120: Antigenic Optimization, Structural Malleability, and Crystal Structure with Antibody VRC-PG04. Journal of Virology, 2013, 87, 2294-2306.                 | 3.4  | 34        |
| 223 | HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opinion on Therapeutic<br>Targets, 2015, 19, 765-783.                                                      | 3.4  | 34        |
| 224 | High-throughput, single-copy sequencing reveals SARS-CoV-2 spike variants coincident with mounting humoral immunity during acute COVID-19. PLoS Pathogens, 2021, 17, e1009431.        | 4.7  | 34        |
| 225 | Unprecedented Role of Hybrid <i>N-</i> Glycans as Ligands for HIV-1 Broadly Neutralizing Antibodies.<br>Journal of the American Chemical Society, 2018, 140, 5202-5210.               | 13.7 | 33        |
| 226 | Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathogens, 2017, 13, e1006074.                          | 4.7  | 33        |
| 227 | Local Conformational Stability of HIV-1 gp120 in Unliganded and CD4-Bound States as Defined by Amide<br>Hydrogen/Deuterium Exchange. Journal of Virology, 2010, 84, 10311-10321.      | 3.4  | 32        |
| 228 | Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent<br>to the CD4 Binding Site. Journal of Virology, 2016, 90, 10220-10235.           | 3.4  | 32        |
| 229 | Antibodyomics: bioinformatics technologies for understanding Bâ€cell immunity to <scp>HIV</scp> â€1.<br>Immunological Reviews, 2017, 275, 108-128.                                    | 6.0  | 32        |
| 230 | Automated Design by Structure-Based Stabilization and Consensus Repair to Achieve Prefusion-Closed Envelope Trimers in a Wide Variety of HIV Strains. Cell Reports, 2020, 33, 108432. | 6.4  | 32        |
| 231 | Germline VRC01 antibody recognition of a modified clade C HIV-1 envelope trimer and a glycosylated HIV-1 gp120 core. ELife, 2018, 7, .                                                | 6.0  | 32        |
| 232 | Structure-Based Identification and Neutralization Mechanism of Tyrosine Sulfate Mimetics That<br>Inhibit HIV-1 Entry. ACS Chemical Biology, 2011, 6, 1069-1077.                       | 3.4  | 31        |
| 233 | Blocking α <sub>4</sub> β <sub>7</sub> integrin binding to SIV does not improve virologic control.<br>Science, 2019, 365, 1033-1036.                                                  | 12.6 | 31        |
| 234 | An antibody class with a common CDRH3 motif broadly neutralizes sarbecoviruses. Science<br>Translational Medicine, 2022, 14, eabn6859.                                                | 12.4 | 31        |

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Improved Prefusion Stability, Optimized Codon Usage, and Augmented Virion Packaging Enhance the<br>Immunogenicity of Respiratory Syncytial Virus Fusion Protein in a Vectored-Vaccine Candidate. Journal<br>of Virology, 2017, 91, . | 3.4  | 30        |
| 236 | Accurate Prediction for Antibody Resistance of Clinical HIV-1 Isolates. Scientific Reports, 2019, 9, 14696.                                                                                                                          | 3.3  | 30        |
| 237 | Interfacial metal and antibody recognition. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14575-14580.                                                                                 | 7.1  | 29        |
| 238 | Structural Basis for Highly Effective HIV-1 Neutralization by CD4-Mimetic Miniproteins Revealed by 1.5ÂÃ<br>Cocrystal Structure of gp120 and M48U1. Structure, 2013, 21, 1018-1029.                                                  | 3.3  | 29        |
| 239 | Antibody-guided structure-based vaccines. Seminars in Immunology, 2020, 50, 101428.                                                                                                                                                  | 5.6  | 29        |
| 240 | Epitope Mapping of Broadly Neutralizing HIV-2 Human Monoclonal Antibodies. Journal of Virology, 2012, 86, 12115-12128.                                                                                                               | 3.4  | 27        |
| 241 | Elicitation of HIV-1-neutralizing antibodies against the CD4-binding site. Current Opinion in HIV and AIDS, 2013, 8, 382-392.                                                                                                        | 3.8  | 27        |
| 242 | Improvement of antibody functionality by structure-guided paratope engraftment. Nature<br>Communications, 2019, 10, 721.                                                                                                             | 12.8 | 27        |
| 243 | Structure-Based Design of Head-Only Fusion Glycoprotein Immunogens for Respiratory Syncytial<br>Virus. PLoS ONE, 2016, 11, e0159709.                                                                                                 | 2.5  | 27        |
| 244 | CD4 Binding Site Antibodies Inhibit Human Immunodeficiency Virus gp120 Envelope Glycoprotein<br>Interaction with CCR5. Journal of Virology, 2003, 77, 713-718.                                                                       | 3.4  | 26        |
| 245 | Crystal Structure and Immunogenicity of the DS-Cav1-Stabilized Fusion Glycoprotein From Respiratory Syncytial Virus Subtype B. Pathogens and Immunity, 2019, 4, 294.                                                                 | 3.1  | 26        |
| 246 | Neutralization Properties of Simian Immunodeficiency Viruses Infecting Chimpanzees and Gorillas.<br>MBio, 2015, 6, .                                                                                                                 | 4.1  | 25        |
| 247 | What Are the Most Powerful Immunogen Design Vaccine Strategies?. Cold Spring Harbor Perspectives in Biology, 2017, 9, a029470.                                                                                                       | 5.5  | 25        |
| 248 | A monoclonal antibody that neutralizes SARS-CoV-2 variants, SARS-CoV, and other sarbecoviruses.<br>Emerging Microbes and Infections, 2022, 11, 147-157.                                                                              | 6.5  | 25        |
| 249 | Peptides from Second Extracellular Loop of C-C Chemokine Receptor Type 5 (CCR5) Inhibit Diverse<br>Strains of HIV-1. Journal of Biological Chemistry, 2012, 287, 15076-15086.                                                        | 3.4  | 24        |
| 250 | Newcastle Disease Virus-Like Particles Displaying Prefusion-Stabilized SARS-CoV-2 Spikes Elicit Potent<br>Neutralizing Responses. Vaccines, 2021, 9, 73.                                                                             | 4.4  | 24        |
| 251 | Characterization of broadly neutralizing antibody responses to HIV-1 in a cohort of long term non-progressors. PLoS ONE, 2018, 13, e0193773.                                                                                         | 2.5  | 24        |
| 252 | VRC34-Antibody Lineage Development Reveals How a Required Rare Mutation Shapes the Maturation of a Broad HIV-Neutralizing Lineage. Cell Host and Microbe, 2020, 27, 531-543.e6.                                                      | 11.0 | 23        |

| #   | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Heavy Chain-Only IgG2b Llama Antibody Effects Near-Pan HIV-1 Neutralization by Recognizing a CD4-Induced Epitope That Includes Elements of Coreceptor- and CD4-Binding Sites. Journal of Virology, 2013, 87, 10173-10181.                        | 3.4  | 22        |
| 254 | CD4 receptor diversity in chimpanzees protects against SIV infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3229-3238.                                                                     | 7.1  | 21        |
| 255 | Development of a 3Mut-Apex-Stabilized Envelope Trimer That Expands HIV-1 Neutralization Breadth<br>When Used To Boost Fusion Peptide-Directed Vaccine-Elicited Responses. Journal of Virology, 2020, 94,                                         | 3.4  | 21        |
| 256 | Mutational fitness landscapes reveal genetic and structural improvement pathways for a<br>vaccine-elicited HIV-1 broadly neutralizing antibody. Proceedings of the National Academy of Sciences<br>of the United States of America, 2021, 118, . | 7.1  | 21        |
| 257 | Rational design and in vivo selection of SHIVs encoding transmitted/founder subtype C HIV-1 envelopes. PLoS Pathogens, 2019, 15, e1007632.                                                                                                       | 4.7  | 20        |
| 258 | Interprotomer disulfide-stabilized variants of the human metapneumovirus fusion glycoprotein<br>induce high titer-neutralizing responses. Proceedings of the National Academy of Sciences of the<br>United States of America, 2021, 118, .       | 7.1  | 20        |
| 259 | Vaccination in a humanized mouse model elicits highly protective PfCSP-targeting anti-malarial antibodies. Immunity, 2021, 54, 2859-2876.e7.                                                                                                     | 14.3 | 19        |
| 260 | Mammalian production of an isotopically enriched outer domain of the HIV-1 gp120 glycoprotein for NMR spectroscopy. Journal of Biomolecular NMR, 2011, 50, 197-207.                                                                              | 2.8  | 18        |
| 261 | Insights from NMR Spectroscopy into the Conformational Properties of Manâ€9 and Its Recognition by<br>Two HIV Binding Proteins. ChemBioChem, 2017, 18, 764-771.                                                                                  | 2.6  | 18        |
| 262 | Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through<br>Omicron. PLoS ONE, 2022, 17, e0268767.                                                                                                         | 2.5  | 18        |
| 263 | NEP: web server for epitope prediction based on antibody neutralization of viral strains with diverse sequences. Nucleic Acids Research, 2014, 42, W64-W71.                                                                                      | 14.5 | 16        |
| 264 | Anti-V2 antibodies virus vulnerability revealed by envelope V1 deletion in HIV vaccine candidates.<br>IScience, 2021, 24, 102047.                                                                                                                | 4.1  | 16        |
| 265 | Design of Alphavirus Virus-Like Particles Presenting Circumsporozoite Junctional Epitopes That Elicit<br>Protection against Malaria. Vaccines, 2021, 9, 272.                                                                                     | 4.4  | 16        |
| 266 | A single residue in influenza virus H2 hemagglutinin enhances the breadth of the B cell response elicited by H2 vaccination. Nature Medicine, 2022, 28, 373-382.                                                                                 | 30.7 | 16        |
| 267 | Attenuated Human Parainfluenza Virus Type 1 Expressing the Respiratory Syncytial Virus (RSV) Fusion<br>(F) Glycoprotein from an Added Gene: Effects of Prefusion Stabilization and Packaging of RSV F.<br>Journal of Virology, 2017, 91, .       | 3.4  | 15        |
| 268 | Immune Monitoring Reveals Fusion Peptide Priming to Imprint Cross-Clade HIV-Neutralizing Responses with a Characteristic Early B Cell Signature. Cell Reports, 2020, 32, 107981.                                                                 | 6.4  | 15        |
| 269 | A Single Shot Pre-fusion-Stabilized Bovine RSV F Vaccine is Safe and Effective in Newborn Calves with Maternally Derived Antibodies. Vaccines, 2020, 8, 231.                                                                                     | 4.4  | 14        |
| 270 | Isolation and Structure of an Antibody that Fully Neutralizes Isolate SIVmac239 Reveals Functional Similarity of SIV and HIV Glycan Shields. Immunity, 2019, 51, 724-734.e4.                                                                     | 14.3 | 13        |

| #   | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Identification and Structure of a Multidonor Class of Head-Directed Influenza-Neutralizing<br>Antibodies Reveal the Mechanism for Its Recurrent Elicitation. Cell Reports, 2020, 32, 108088.                                                     | 6.4  | 13        |
| 272 | Protective antibodies against human parainfluenza virus type 3 infection. MAbs, 2021, 13, 1912884.                                                                                                                                               | 5.2  | 13        |
| 273 | A non-affinity purification process for GMP production of prefusion-closed HIV-1 envelope trimers from clades A and C for clinical evaluation. Vaccine, 2021, 39, 3379-3387.                                                                     | 3.8  | 13        |
| 274 | N-terminal Transmembrane-Helix Epitope Tag for X-ray Crystallography and Electron Microscopy of<br>Small Membrane Proteins. Journal of Molecular Biology, 2021, 433, 166909.                                                                     | 4.2  | 13        |
| 275 | Safety and immunogenicity of an HIV-1 prefusion-stabilized envelope trimer (Trimer 4571) vaccine in<br>healthy adults: A first-in-human open-label, randomized, dose-escalation, phase 1 clinical trial.<br>EClinicalMedicine, 2022, 48, 101477. | 7.1  | 13        |
| 276 | Vaccine-elicited murine antibody WS6 neutralizes diverse beta-coronaviruses by recognizing a helical stem supersite of vulnerability. Structure, 2022, 30, 1233-1244.e7.                                                                         | 3.3  | 13        |
| 277 | Virus-Like Particle Based Vaccines Elicit Neutralizing Antibodies against the HIV-1 Fusion Peptide.<br>Vaccines, 2020, 8, 765.                                                                                                                   | 4.4  | 12        |
| 278 | Fusion peptide priming reduces immune responses to HIV-1 envelope trimer base. Cell Reports, 2021, 35, 108937.                                                                                                                                   | 6.4  | 12        |
| 279 | Eliminating antibody polyreactivity through addition of <i>N</i> â€linked glycosylation. Protein Science, 2015, 24, 1019-1030.                                                                                                                   | 7.6  | 11        |
| 280 | Sequencing HIV-neutralizing antibody exons and introns reveals detailed aspects of lineage maturation. Nature Communications, 2018, 9, 4136.                                                                                                     | 12.8 | 11        |
| 281 | A matrix of structure-based designs yields improved VRC01-class antibodies for HIV-1 therapy and prevention. MAbs, 2021, 13, 1946918.                                                                                                            | 5.2  | 11        |
| 282 | Blocking α <sub>4</sub> β <sub>7</sub> integrin delays viral rebound in SHIV <sub>SF162P3</sub><br>-infected macaques treated with anti-HIV broadly neutralizing antibodies. Science Translational<br>Medicine, 2021, 13, .                      | 12.4 | 11        |
| 283 | Mammalian Expression of Isotopically Labeled Proteins for NMR Spectroscopy. Advances in Experimental Medicine and Biology, 2012, 992, 197-211.                                                                                                   | 1.6  | 10        |
| 284 | Effective Isotope Labeling of Proteins in a Mammalian Expression System. Methods in Enzymology, 2015, 565, 289-307.                                                                                                                              | 1.0  | 9         |
| 285 | SARS-CoV-2 S2P spike ages through distinct states with altered immunogenicity. Journal of Biological Chemistry, 2021, 297, 101127.                                                                                                               | 3.4  | 9         |
| 286 | Antigenic analysis of the HIV-1 envelope trimer implies small differences between structural states 1 and 2. Journal of Biological Chemistry, 2022, 298, 101819.                                                                                 | 3.4  | 9         |
| 287 | Highly protective antimalarial antibodies via precision library generation and yeast display screening.<br>Journal of Experimental Medicine, 2022, 219, .                                                                                        | 8.5  | 9         |
| 288 | Single-Shot Vaccines against Bovine Respiratory Syncytial Virus (BRSV): Comparative Evaluation of Long-Term Protection after Immunization in the Presence of BRSV-Specific Maternal Antibodies. Vaccines, 2021, 9, 236.                          | 4.4  | 8         |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Structural basis of malaria RIFIN binding by LILRB1-containing antibodies. Nature, 2021, 592, 639-643.                                                                                             | 27.8 | 8         |
| 290 | Tyrosine O-sulfation proteoforms affect HIV-1 monoclonal antibody potency. Scientific Reports, 2022, 12, 8433.                                                                                     | 3.3  | 8         |
| 291 | Somatic hypermutation to counter a globally rare viral immunotype drove off-track antibodies in the CAP256-VRC26 HIV-1 V2-directed bNAb lineage. PLoS Pathogens, 2019, 15, e1008005.               | 4.7  | 6         |
| 292 | Disulfide stabilization of human norovirus GI.1 virus-like particles focuses immune response toward blockade epitopes. Npj Vaccines, 2020, 5, 110.                                                 | 6.0  | 6         |
| 293 | Broad coverage of neutralization-resistant SIV strains by second-generation SIV-specific antibodies targeting the region involved in binding CD4. PLoS Pathogens, 2022, 18, e1010574.              | 4.7  | 6         |
| 294 | Nextâ€generation sequencing of the intrahepatic antibody repertoire delineates a unique Bâ€cell response<br>in HBVâ€associated acute liver failure. Journal of Viral Hepatitis, 2020, 27, 847-851. | 2.0  | 5         |
| 295 | Structural basis of glycan276-dependent recognition by HIV-1 broadly neutralizing antibodies. Cell Reports, 2021, 37, 109922.                                                                      | 6.4  | 5         |
| 296 | Vaccine Design Reaches the Atomic Level. Science Translational Medicine, 2011, 3, 91ps29.                                                                                                          | 12.4 | 4         |
| 297 | Glycan Positioning Impacts HIV-1 Env Glycan-Shield Density, Function, and Recognition by Antibodies.<br>IScience, 2020, 23, 101711.                                                                | 4.1  | 4         |
| 298 | Removal of variable domain <i>N</i> -linked glycosylation as a means to improve the homogeneity of<br>HIV-1 broadly neutralizing antibodies. MAbs, 2020, 12, 1836719.                              | 5.2  | 4         |
| 299 | Distinct disease features in chimpanzees infected with a precore HBV mutant associated with acute<br>liver failure in humans. PLoS Pathogens, 2020, 16, e1008793.                                  | 4.7  | 4         |
| 300 | The covalent SNAP tag for protein display quantification and low-pH protein engineering. Journal of<br>Biotechnology, 2020, 320, 50-56.                                                            | 3.8  | 4         |
| 301 | Antibody screening at reduced <scp>pH</scp> enables preferential selection of potently neutralizing antibodies targeting <scp>SARSâ€CoV</scp> â€2. AICHE Journal, 2021, 67, e17440.                | 3.6  | 4         |
| 302 | Structural Biology and the Design of Effective Vaccines for HIV-1 and Other Viruses. , 2010, , 387-402.                                                                                            |      | 4         |
| 303 | Structural basis for llama nanobody recognition and neutralization of HIV-1 at the CD4-binding site.<br>Structure, 2022, 30, 862-875.e4.                                                           | 3.3  | 4         |
| 304 | The 447-52D Antibody: Hitting HIV-1 Where Its Armor Is Thickest. Structure, 2004, 12, 173-174.                                                                                                     | 3.3  | 3         |
| 305 | Rational Engraftment of Quaternary-Interactive Acidic Loops for Anti-HIV-1 Antibody Improvement.<br>Journal of Virology, 2021, 95, .                                                               | 3.4  | 3         |
| 306 | Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined<br>Development of SARS-CoV-2 Spike Molecular Probes. SSRN Electronic Journal, 2020, , 3639618.  | 0.4  | 3         |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Extended antibody-framework-to-antigen distance observed exclusively with broad HIV-1-neutralizing antibodies recognizing glycan-dense surfaces. Nature Communications, 2021, 12, 6470.            | 12.8 | 3         |
| 308 | Structural Basis of Antibody Conformation and Stability Modulation by Framework Somatic Hypermutation. Frontiers in Immunology, 2021, 12, 811632.                                                  | 4.8  | 3         |
| 309 | Development of Neutralization Breadth against Diverse HIVâ€1 by Increasing Ab–Ag Interface on V2.<br>Advanced Science, 2022, , 2200063.                                                            | 11.2 | 3         |
| 310 | Structures of HIV-1 Neutralizing Antibody 10E8 Delineate the Mechanistic Basis of Its Multi-Peak<br>Behavior on Size-Exclusion Chromatography. Antibodies, 2021, 10, 23.                           | 2.5  | 2         |
| 311 | GLYCO: a tool to quantify glycan shielding of glycosylated proteins. Bioinformatics, 2022, 38, 1152-1154.                                                                                          | 4.1  | 2         |
| 312 | Structural basis of LAIR1 targeting by polymorphic Plasmodium RIFINs. Nature Communications, 2021, 12, 4226.                                                                                       | 12.8 | 1         |
| 313 | Structure of an influenza group 2-neutralizing antibody targeting the hemagglutinin stem supersite.<br>Structure, 2022, , .                                                                        | 3.3  | 1         |
| 314 | <i>C</i> <sub>3</sub> -Symmetric Aromatic Core of Griffithsin Is Essential for Potent Anti-HIV Activity.<br>ACS Chemical Biology, 2022, 17, 1450-1459.                                             | 3.4  | 1         |
| 315 | Sequence-Signature Optimization Enables Improved Identification of Human HV6-1-Derived Class<br>Antibodies That Neutralize Diverse Influenza A Viruses. Frontiers in Immunology, 2021, 12, 662909. | 4.8  | 0         |
| 316 | HIV-1 Receptor Interactions. , 2003, , 99-104.                                                                                                                                                     |      | 0         |
| 317 | HIV-1–Receptor Interactions. , 2010, , 97-101.                                                                                                                                                     |      | 0         |
|     |                                                                                                                                                                                                    |      |           |

Penetrating the Glycan Shield on HIVâ€1. FASEB Journal, 2015, 29, 106.3.

0.5 0