Tiziana Bonaldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8883282/publications.pdf

Version: 2024-02-01

45317 81900 9,723 98 39 90 citations g-index h-index papers 102 102 102 14602 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genetics, 2005, 37, 391-400.	21.4	1,710
2	Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO Journal, 2003, 22, 5551-5560.	7.8	1,071
3	Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9., 2005, 1, 143-145.		462
4	The High Mobility Group (Hmg) Boxes of the Nuclear Protein Hmg1 Induce Chemotaxis and Cytoskeleton Reorganization in Rat Smooth Muscle Cells. Journal of Cell Biology, 2001, 152, 1197-1206.	5. 2	435
5	Polycomb-Dependent H3K27me1 and H3K27me2 Regulate Active Transcription and Enhancer Fidelity. Molecular Cell, 2014, 53, 49-62.	9.7	403
6	NEW EMBO MEMBERS' REVIEW: The double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO Journal, 2001, 20, 4337-4340.	7.8	381
7	PTMs on H3 Variants before Chromatin Assembly Potentiate Their Final Epigenetic State. Molecular Cell, 2006, 24, 309-316.	9.7	361
8	Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nature Communications, 2018, 9, 105.	12.8	326
9	Tet Proteins Connect the O-Linked N-acetylglucosamine Transferase Ogt to Chromatin in Embryonic Stem Cells. Molecular Cell, 2013, 49, 645-656.	9.7	285
10	Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nature Methods, 2008, 5, 459-460.	19.0	268
11	The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. EMBO Journal, 2002, 21, 6865-6873.	7.8	219
12	The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nature Medicine, 2016, 22, 624-631.	30.7	214
13	The HP1α–CAF1–SetDB1â€containing complex provides H3K9me1 for Suv39â€mediated K9me3 in pericentri heterochromatin. EMBO Reports, 2009, 10, 769-775.	ic 4.5	201
14	Substantial Histone Reduction Modulates Genomewide Nucleosomal Occupancy and Global Transcriptional Output. PLoS Biology, 2011, 9, e1001086.	5.6	193
15	Therapeutic Targeting of RNA Splicing Catalysis through Inhibition of Protein Arginine Methylation. Cancer Cell, 2019, 36, 194-209.e9.	16.8	184
16	Threshold-controlled ubiquitination of the EGFR directs receptor fate. EMBO Journal, 2013, 32, 2140-2157.	7.8	156
17	Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome. Molecular BioSystems, 2013, 9, 2231.	2.9	141
18	Functional Landscape of PCGF Proteins Reveals Both RING1A/B-Dependent-and RING1A/B-Independent-Specific Activities. Molecular Cell, 2019, 74, 1037-1052.e7.	9.7	128

#	Article	IF	CITATIONS
19	Reticulon 3–dependent ER-PM contact sites control EGFR nonclathrin endocytosis. Science, 2017, 356, 617-624.	12.6	118
20	Proteomics profiling of arginine methylation defines PRMT5 substrate specificity. Science Signaling, 2019, 12, .	3.6	114
21	The RAG1 Homeodomain Recruits HMG1 and HMG2 To Facilitate Recombination Signal Sequence Binding and To Enhance the Intrinsic DNA-Bending Activity of RAG1-RAG2. Molecular and Cellular Biology, 1999, 19, 6532-6542.	2.3	112
22	A combination of different mass spectroscopic techniques for the analysis of dynamic changes of histone modifications. Proteomics, 2004, 4, 1382-1396.	2.2	102
23	The Long Acidic Tail of High Mobility Group Box 1 (HMGB1) Protein Forms an Extended and Flexible Structure That Interacts with Specific Residues within and between the HMG Boxes. Biochemistry, 2004, 43, 11992-11997.	2.5	94
24	Systems-wide Analysis of a Phosphatase Knock-down by Quantitative Proteomics and Phosphoproteomics. Molecular and Cellular Proteomics, 2009, 8, 1908-1920.	3.8	94
25	Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells. Nucleic Acids Research, 2012, 40, 3403-3418.	14.5	94
26	Combined Use of RNAi and Quantitative Proteomics to Study Gene Function in Drosophila. Molecular Cell, 2008, 31, 762-772.	9.7	93
27	miR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth. Nature Communications, 2015, 6, 8725.	12.8	88
28	Extracellular vesicle-mediated transfer of CLIC1 protein is a novel mechanism for the regulation of glioblastoma growth. Oncotarget, 2015, 6, 31413-31427.	1.8	87
29	DEPDC1B Coordinates De-adhesion Events and Cell-Cycle Progression at Mitosis. Developmental Cell, 2014, 31, 420-433.	7.0	76
30	Quantitative proteomics as a new piece of the systems biology puzzle. Journal of Proteomics, 2008, 71, 357-367.	2.4	73
31	SILAC-based proteomic analysis to dissect the "histone modification signature―of human breast cancer cells. Amino Acids, 2011, 41, 387-399.	2.7	71
32	PARP14 Controls the Nuclear Accumulation of a Subset of Type I IFN–Inducible Proteins. Journal of Immunology, 2018, 200, 2439-2454.	0.8	70
33	Methylation of CenH3 arginine 37 regulates kinetochore integrity and chromosome segregation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9029-9034.	7.1	62
34	Cell Reprogramming Requires Silencing of a Core Subset of Polycomb Targets. PLoS Genetics, 2013, 9, e1003292.	3.5	59
35	Targeting the scaffolding role of LSD1 (KDM1A) poises acute myeloid leukemia cells for retinoic acid–induced differentiation. Science Advances, 2020, 6, eaax2746.	10.3	56
36	The Proteomic Investigation of Chromatin Functional Domains Reveals Novel Synergisms among Distinct Heterochromatin Components. Molecular and Cellular Proteomics, 2013, 12, 764-780.	3.8	54

#	Article	IF	CITATIONS
37	Design of KDM4 Inhibitors with Antiproliferative Effects in Cancer Models. ACS Medicinal Chemistry Letters, 2017, 8, 869-874.	2.8	50
38	High constitutive activity of a broad panel of housekeeping and tissue-specific <i>cis</i> regulatory elements depends on a subset of ETS proteins. Genes and Development, 2017, 31, 399-412.	5.9	48
39	The Use of Mass Spectrometry for the Analysis of Histone Modifications. Methods in Enzymology, 2003, 377, 111-130.	1.0	42
40	The N-Terminus of Drosophila SU(VAR)3â^'9 Mediates Dimerization and Regulates Its Methyltransferase Activityâ€. Biochemistry, 2004, 43, 3740-3749.	2.5	42
41	Pathology Tissue-quantitative Mass Spectrometry Analysis to Profile Histone Post-translational Modification Patterns in Patient Samples. Molecular and Cellular Proteomics, 2016, 15, 866-877.	3.8	41
42	Site-specific acetylation of ISWI by GCN5. BMC Molecular Biology, 2007, 8, 73.	3.0	40
43	PRMT1 Is Recruited via DNA-PK to Chromatin Where It Sustains the Senescence-Associated Secretory Phenotype in Response to Cisplatin. Cell Reports, 2020, 30, 1208-1222.e9.	6.4	40
44	ARGONAUTE2 cooperates with SWI/SNF complex to determine nucleosome occupancy at human Transcription Start Sites. Nucleic Acids Research, 2015, 43, 1498-1512.	14.5	37
45	The kinetochore module Okp1 ^{CENPâ€Q} /Ame1 ^{CENPâ€U} is a reader for Nâ€terminal modifications on the centromeric histone Cse4 ^{CENPâ€A} . EMBO Journal, 2019, 38, .	7.8	34
46	Mass Spectrometry-Based Proteomics for the Analysis of Chromatin Structure and Dynamics. International Journal of Molecular Sciences, 2013, 14, 5402-5431.	4.1	31
47	Extensive and systematic rewiring of histone post-translational modifications in cancer model systems. Nucleic Acids Research, 2018, 46, 3817-3832.	14.5	31
48	The contribution of mass spectrometry-based proteomics to understanding epigenetics. Epigenomics, 2016, 8, 429-445.	2.1	30
49	Improved bottomâ€up strategy to efficiently separate hypermodified histone peptides through ultraâ€HPLC separation on a bench top Orbitrap instrument. Proteomics, 2014, 14, 2212-2225.	2.2	28
50	Chromatin proteomics reveals novel combinatorial histone modification signatures that mark distinct subpopulations of macrophage enhancers. Nucleic Acids Research, 2017, 45, 12195-12213.	14.5	26
51	Profiling of Epigenetic Features in Clinical Samples Reveals Novel Widespread Changes in Cancer. Cancers, 2019, 11, 723.	3.7	26
52	Advances in enrichment methods for mass spectrometry-based proteomics analysis of post-translational modifications. Journal of Chromatography A, 2022, 1678, 463352.	3.7	25
53	Zc3h10 is a novel mitochondrial regulator. EMBO Reports, 2018, 19, .	4.5	23
54	Enrichment of histones from patient samples for mass spectrometry-based analysis of post-translational modifications. Methods, 2020, 184, 19-28.	3.8	23

#	Article	IF	Citations
55	PRMT1-mediated methylation of the microprocessor-associated proteins regulates microRNA biogenesis. Nucleic Acids Research, 2020, 48, 96-115.	14.5	22
56	The ChroP Approach Combines ChIP and Mass Spectrometry to Dissect Locus-specific Proteomic Landscapes of Chromatin. Journal of Visualized Experiments, 2014, , .	0.3	21
57	Intestinal differentiation involves cleavage of histone H3 N-terminal tails by multiple proteases. Nucleic Acids Research, 2021, 49, 791-804.	14.5	21
58	Long nonâ€coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation. EMBO Reports, 2021, 22, e50852.	4.5	21
59	A role for CENP-A/Cse4 phosphorylation on serine 33 in deposition at the centromere. FEMS Yeast Research, 2018, 18, .	2.3	20
60	FAM46C and FNDC3A Are Multiple Myeloma Tumor Suppressors That Act in Concert to Impair Clearing of Protein Aggregates and Autophagy. Cancer Research, 2020, 80, 4693-4706.	0.9	20
61	Mass spectrometryâ€based characterization of histones in clinical samples: applications, progress, and challenges. FEBS Journal, 2022, 289, 1191-1213.	4.7	20
62	A Super-SILAC Strategy for the Accurate and Multiplexed Profiling of Histone Posttranslational Modifications. Methods in Enzymology, 2017, 586, 311-332.	1.0	18
63	LSD1-directed therapy affects glioblastoma tumorigenicity by deregulating the protective ATF4-dependent integrated stress response. Science Translational Medicine, 2021, 13, eabf7036.	12.4	18
64	Reply to "Chaetocin is a nonspecific inhibitor of histone lysine methyltransferases". Nature Chemical Biology, 2013, 9, 137-137.	8.0	17
65	Biochemical systems approaches for the analysis of histone modification readout. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 657-668.	1.9	17
66	PAT-H-MS coupled with laser microdissection to study histone post-translational modifications in selected cell populations from pathology samples. Clinical Epigenetics, 2017, 9, 69.	4.1	17
67	Pharmacological inhibition of LSD1 triggers myeloid differentiation by targeting GSE1 oncogenic functions in AML. Oncogene, 2022, 41, 878-894.	5.9	17
68	Mass Spectrometry-Based Proteomics to Unveil the Non-coding RNA World. Frontiers in Molecular Biosciences, 2018, 5, 90.	3.5	15
69	Spatial epi-proteomics enabled by histone post-translational modification analysis from low-abundance clinical samples. Clinical Epigenetics, 2021, 13, 145.	4.1	15
70	Quantitative Chemical Proteomics Identifies Novel Targets of the Anti-cancer Multi-kinase Inhibitor E-3810. Molecular and Cellular Proteomics, 2014, 13, 1495-1509.	3.8	14
71	Clinical Application of Mass Spectrometryâ€Based Proteomics in Lung Cancer Early Diagnosis. Proteomics - Clinical Applications, 2020, 14, 1900138.	1.6	14
72	"Chromatomics―the analysis of the chromatome. Molecular BioSystems, 2005, 1, 112-116.	2.9	13

#	Article	IF	CITATIONS
73	hmSEEKER: Identification of hmSILAC Doublets in MaxQuant Output Data. Proteomics, 2019, 19, e1800300.	2.2	13
74	hSWATH: Unlocking SWATH's Full Potential for an Untargeted Histone Perspective. Journal of Proteome Research, 2019, 18, 3840-3849.	3.7	12
75	Alternative digestion approaches improve histone modification mapping by mass spectrometry in clinical samples. Proteomics - Clinical Applications, 2019, 13, 1700166.	1.6	11
76	Nanoelectrospray peptide mapping revisited: Composite survey spectra allow high dynamic range protein characterization without LCMS on an orbitrap mass spectrometer. International Journal of Mass Spectrometry, 2007, 268, 158-167.	1.5	10
77	Epigenetic drug target deconvolution by mass spectrometry–based technologies. Nature Structural and Molecular Biology, 2019, 26, 854-857.	8.2	9
78	Systems Biology "On-the-Flyâ€! SILAC-Based Quantitative Proteomics and RNAi Approach in Drosophila melanogaster. Methods in Molecular Biology, 2010, 662, 59-78.	0.9	9
79	Label-Free Mass Spectrometry-Based Quantification of Linker Histone H1 Variants in Clinical Samples. International Journal of Molecular Sciences, 2020, 21, 7330.	4.1	8
80	Systematic Analysis of the Impact of R-Methylation on RBPs-RNA Interactions: A Proteomic Approach. Frontiers in Molecular Biosciences, 2021, 8, 688973.	3.5	8
81	Biochemical and Computational Approaches for the Large-Scale Analysis of Protein Arginine Methylation by Mass Spectrometry. Current Protein and Peptide Science, 2020, 21, 725-739.	1.4	8
82	Quantitative assessment of chemical artefacts produced by propionylation of histones prior to mass spectrometry analysis. Proteomics, 2016, 16, 1952-1954.	2.2	7
83	Mass-spectrometry analysis of histone post-translational modifications in pathology tissue using the PAT-H-MS approach. Data in Brief, 2016, 7, 188-194.	1.0	6
84	SILAC-Based Quantitative Strategies for Accurate Histone Posttranslational Modification Profiling Across Multiple Biological Samples. Methods in Molecular Biology, 2017, 1528, 97-119.	0.9	6
85	Proteomics Meets Genetics: SILAC Labeling of Drosophila melanogaster Larvae and Cells for In Vivo Functional Studies. Methods in Molecular Biology, 2014, 1188, 293-311.	0.9	4
86	Recent advances in mass spectrometry analysis of histone post-translational modifications: potential clinical impact of the PAT-H-MS approach. Expert Review of Proteomics, 2016, 13, 245-250.	3.0	3
87	Dual role of PRMT1-dependent arginine methylation in cellular responses to genotoxic stress. Molecular and Cellular Oncology, 2020, 7, 1743808.	0.7	3
88	Software Options for the Analysis of MS-Proteomic Data. Methods in Molecular Biology, 2021, 2361, 35-59.	0.9	3
89	ProMetheusDB: An In-Depth Analysis of the High-Quality Human Methyl-proteome. Molecular and Cellular Proteomics, 2022, 21, 100243.	3.8	3
90	MS-analysis of SILAC-labeled MYC-driven B lymphoma cells overexpressing miR-17-19b. Data in Brief, 2016, 7, 349-353.	1.0	2

#	Article	IF	CITATIONS
91	Native Chromatin Proteomics (N-ChroP) to Characterize Histone Post-translational Modification (PTM) Combinatorics at Distinct Genomic Regions. Methods in Molecular Biology, 2021, 2351, 251-274.	0.9	1
92	Mass Spectrometry for the Identification of Posttranslational Modifications in Histones and Its Application in Clinical Epigenetics., 2016, , 195-214.		1
93	Mass Spectrometry and Epigenetics. , 2017, , 1-18.		1
94	HMGBI MOLECULAR BIOLOGY IN MYELOID CELLS. Shock, 2004, 21, 36.	2.1	0
95	Spatiotemporal plasticity of miRNAs functions: The miR-17-92 case. Molecular and Cellular Oncology, 2016, 3, e1156216.	0.7	O
96	MYC/miR-17-92 interplay maintains B-lymphoma cell homeostasis. Cell Cycle, 2016, 15, 1025-1026.	2.6	0
97	Mass Spectrometry and Epigenetics. , 2019, , 2251-2268.		O
98	Abstract 4731: Therapeutic targeting of RNA splicing through inhibition of protein arginine methylation. , 2019, , .		O